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This paper gives an overview of mixed quantum/classical simulation techniques
based on the ideas of surface hopping (Tully, 1990). Basics such as the separation
of a system into a classical and a quantum mechanical part are addressed. First, the
Ehrenfest approach, which relies on a single-configuration approximation to the total
wave function, is explained. Then an analogous multi-configurational approach, to
which surface hopping is an approximation, is given. The surface hopping method
developed by John Tully is explained in detail. Several other methods are summa-
rized and applications are discussed briefly to illustrate the scope of these meth-
ods. c© 1999 Academic Press

1. INTRODUCTION

Computer simulations have contributed significantly to the understanding of many chem-
ical, physical, and biochemical phenomena. Some types of simulation provide information
on static or equilibrium properties of a system only, but other methods, such as molecular
dynamics, directly mimic real-time dynamics so that dynamical processes can be studied in
detail. The latter class of simulations is our main interest in this paper. Molecular dynamics
simulations have been done at many “levels,” ranging fromab initio simulations to entirely
classical simulations. Many of the systems of interest are large because most reactions take
place in solution. Quantum effects play a significant role in many of these reactions. It is
quite a challenge to simulate such systems because on the one hand all interactions within
the system have to be incorporated, while on the other hand the significant quantum effects
have to be accounted for as well.
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The most ambitious approach is to treat the entire system quantum mechanically. Cur-
rently, however, exact quantum dynamical simulations are restricted to dealing with small
systems on short time scales because of the formidable computational cost involved. The
most straightforward approach, on the other hand, is to neglect quantum effects or to in-
clude them in some effective way and then treat the entire system classically. Classical
simulations are conceptually simple. If one knows how the particles in the system inter-
act, one can compute the forces between them and solve Newton’s equations of motion to
propagate the system in discrete time. This is straightforward and computationally cheap
(compared to doing quantum calculations). Dynamics can be investigated over long time
scales and, moreover, relatively large systems can be studied. Although patience is still a
virtue, nowadays a classical simulation can easily cover the nanosecond range time scale
while dealing with a system of on the order of 10,000 atoms or even more (see, for a recent
example, Ref. [2]). Obviously simulation within the classical limit is the method of choice
for a large number of systems. Modeling interactions between particles remains a challenge,
however. This can be illustrated, for instance, by the multitude of available potential models
for simulation of bulk water (to name a very few [3–5]).

If quantum effects are known to be important, modeling the system within a classical
treatment fails to accurately reproduce experimentally observed quantities. A compromise
between an entirely quantum mechanical treatment and a completely classical one is simula-
tion within a mixed quantum/classical framework. The quantum character of a few selected
degrees of freedom is included explicitly while the remainder of the system is treated clas-
sically. An advantage is that a larger—although mainly classical—system can be studied
while the “most important” quantum effects are incorporated. Separation of the total system
in a classical part and a quantum mechanical part is not trivial since classical and quantum
dynamics are incompatible in principle. A key issue is self-consistency. The degrees of
freedom that are treated quantum mechanically must evolve correctly under influence of
the classical degrees of freedom, while the motion of the classical degrees of freedom in turn
must depend correctly on that of the quantum degrees of freedom. An accurate treatment of
this latter feedback is especially challenging. There are a number of standard approaches to
describe the dynamics of the quantum degrees of freedom under the influence of classical
degrees of freedom, such as the classical path method [6]. This method, however, fails to
include the influence of the quantum dynamics on the dynamics of the classical system.
In this paper we discuss two classes of methods that attempt to treat the quantum and
classical degrees of freedom in a self-consistent way. The first class of methods is based
on a mean field treatment (see, e.g., Ref. [7]) (Section 2.1) and the second one is surface
hopping [1] (Section 2.7). Depending on the mixed quantum/classical method of choice
and the complexity of the system typically dynamics can be studied over a range of a few
tens of femtoseconds to a few hundred picoseconds. The longer time scales are possible for
simulations in which the quantum dynamics is adiabatic, i.e., when the Born–Oppenheimer
approximation is valid. Then the quantum subsystem adjusts itself infinitely fast to the
motion of the classical particles and remains in its initial state. The number of degrees of
freedom that can be treated quantum mechanically may be limited, especially for methods
based on wave functions, and the memory requirements for large-scale applications may
increase dramatically.

In this paper an introduction to wave function-based methods is given [8]. Methods based
on path integrals [9–20], which are widely used for incorporation of quantum effects, are
not discussed, however. Path integral methods are very well suited to the study of structural
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or equilibrium properties of a system or, in combination with transition state theory, to the
calculation of rate constants. A disadvantage is that it is generally much harder to extract
real-time dynamical properties [21, 22]. A notable exception in that respect is centroid
molecular dynamics [23–30], a promising method based on the centroid variable in the path
integral formulation [9]. An advantage of path integral-based methods over wave function-
based methods is that often many more degrees of freedom can be treated quantum mechani-
cally.

In the methods discussed in this paper the system is separated in a strictly classical part
and a quantum mechanical part, although some of the derivations rely on a semiclassical
formulation. Nuclear quantum effects such as tunneling are not incorporated at all or at
best are treated in a phenomenological manner. Semiclassical methods or mixed quantum/
semiclassical methods are not discussed. Recent developments in this area [31–37] are very
promising for dealing with the kind of systems discussed in this paper. Also, this paper
deals exclusively with methods in which interactions in the system are modeled in advance.
This obviously introduces approximations and inaccuracies. A method that does not rely on
preassigned interaction potentials is the Car–Parrinello simulation method [38, 39]. Here
the forces are determined on the fly from electronic structure calculations. Car–Parrinello
is typically used for classical dynamics (see, e.g., [40–42]), although recently it has been
combined with path integral methods in order to incorporate quantum effects [43], and is
generally limited to systems of a small number of molecules.

The outline of this paper is as follows. The Introduction briefly summarizes the molecular
dynamics method and properties that are generally of interest in this kind of simulation.
Section 2 explains the basic ideas of mixed quantum/classical simulations. First, the sep-
aration of the system into “fast” (quantum mechanical) and “slow” (classical) degrees of
freedom is explained within a mean field treatment. Then several issues such as the adiabatic,
or Born–Oppenheimer, approximation and the interaction between quantum and classical
degrees of freedom are discussed. Second, it is shown that the separation of degrees of free-
dom for surface hopping methods can be obtained analogously to the mean field case. The
“molecular dynamics with quantum transitions” surface hopping method is discussed in
detail. Limitations of both mean field methods and surface hopping methods are mentioned
in the course of this section. The subsequent two sections deal with more “sophisticated”
methods. The first summarizes a method for the study of infrequent events (Section 3). The
second describes a method with which to calculate quantum wave functions for more than
a single quantum degree of freedom (Section 4). Each section includes an application as an
illustration of the methods discussed. We conclude in Section 5.

1.1. Classical and Quantum Molecular Dynamics

A thorough review of classical simulation techniques can be found in Allen and Tildesley
[44] and a more recent book by Smit and Frenkel [45]. An experimental condensed phase
system that contains on the order of>1023 particles is often modeled with a limited number
of particles within a volume, which is called the simulation box. Often periodic boundaries
of the simulation box are applied in order to mimic an infinitely large system. In general one
would like to choose a system as small as possible (because that is cheap computationally
speaking) while avoiding finite size effects, i.e., artifacts, due to an insufficiently large
system. Since mixed quantum/classical simulations are more computationally expensive
than classical ones it is even more crucial to balance cost against the likelihood of artifacts.
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The interaction between atoms is governed by their internal electronic structure. In sim-
ulations based ona priori modeled interactions each atom type has a specific interaction
potential. A common way to simplify the calculation of the total potential energy is to
approximate it with a sum over pairwise interactions dependent on the interatomic distances.
This approximation is reasonable for most types of interaction; only inherent many-body
effects such as polarization may not be adequately described by a pairwise decomposable
potential. A potential model for van der Waals type interactions usually consists of a repul-
sive core with an attractive tail such as the empirical Lennard–Jones potential. Simulation
of classical dynamics is straightforward in principle. The forces are calculated from the
interaction potential, and Newtonian equations of motion are integrated with an appropriate
integrator (see, e.g., [46, 47]). In a mixed quantum/classical molecular dynamics simula-
tion the classical degrees of freedom undergo Newtonian dynamics as in a purely classical
simulation. The only difference is in the forces on the classical degrees of freedom, as will
be discussed in subsequent sections. In simulations, classical or mixed quantum/classical,
there are a few subtleties including the treatment of long-range electrostatic interactions
(see, e.g., [48–51]), the treatment of intramolecular interactions, or, alternatively, the con-
straining of molecular conformations (e.g., [52–54]) and obtaining of properties within the
thermodynamic ensemble of interest (e.g., [55–59]).

A large number of properties can be calculated in a molecular dynamics simulation rang-
ing from structural properties to dynamical and spectral properties. When quantum degrees
of freedom are involved in principle these properties can be calculated analogously to the
classical case, but especially transport properties may suffer from poor convergence. For a
discussion and references on this topic, see [44]. Structural information, such as radial distri-
bution functions, structure factors, and coordination numbers, can be obtained. Dynamical
information includes diffusion coefficients (see [60–62] for some examples dealing with
excess electrons) and other transport properties such as viscosity and thermal conductivity.
For mixed quantum/classical systems, spectral properties are also of interest. The density of
states, the absorption spectrum, the mean excitation energy (band gap between ground state
and first excited state), and the onset of the continuum of excited states can be determined
(e.g., [63–66]). More recently pump-and-probe experiments have been simulated [67–71].
These experiments yield time-resolved information on the spectral evolution, the so-called
spectral traces. When the time resolution is sufficient this method not only serves to probe
the spectral composition of the absorption band, but also provides a means to investigate
the coupling between the properties of the quantum subsystem and the dynamics of the
classical system.

2. MIXED QUANTUM/CLASSICAL DYNAMICS

2.1. Separation of Degrees of Freedom: The Ehrenfest Approach

This section explains commonly used approximations and simplifications for the sim-
ulation of a system in which quantum effects of a limited number of degrees of freedom
are important. The system is separated in a subsystem of slow degrees of freedom, which
will ultimately be treated as classical, and fast degrees of freedom, which will retain their
quantum mechanical nature. For example, for a system consisting of many atoms, one might
designate (some of) the electrons as the fast degrees of freedom and the nuclei as the slow
degrees of freedom. Note that the existence of separation in time scales is crucial when
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the classical limit is ultimately taken for the slow degrees of freedom. One has to be very
careful in dividing a system into classical and quantum mechanical parts see, e.g., Ref. [72],
especially when time scales are comparable.

Note that the notation introduced here—subscriptsc andq—anticipates which degrees
of freedom are going to be treated classically (c) and which quantum mechanically (q).
This notation may be dropped in the remainder of this paper when confusion is unlikely.

Rigorously speaking the quantum nature of all degrees of freedom has to be accounted for,
irrespective of the designation “slow” or “fast.” The time-dependent Schr¨odinger equation
for the entire system has to be solved. The total wave function9(r , R, t) is the solution of

i h̄
∂9(r ,R, t)

∂t
= H9(r ,R, t), (1)

where H is the Hamiltonian,r are the coordinates of the fast degrees of freedom, and
R are those of the slow ones. Note that fast coordinates—which are going to be treated
quantum mechanically—are labeled with lower case letters while slow coordinates—which
are ultimately going to be treated classically—are denoted by capital letters. The vectorR
thus is a 3N-dimensional vector containing the coordinatesR j of all N slow degrees of
freedom in the system; similarlyr is a 3n-dimensional vector.

The HamiltonianH of the system ofN slow degrees of freedom with massM andn fast
degrees of freedom of massm is

H = Kc + Hq.

HereKc is the kinetic energy operator

Kc = −
N∑

I=1

h̄2

2MI
∇2

RI
,

and the Hamiltonian for the fast subsystemHq is of the form

Hq(r ,R, t) = −
n∑

i=1

h̄2

2m
∇2

r i
+ Vqq(r , t)+ Vcc(R, t)+ Vqc(r ,R, t)

when pairwise additive interactions are assumed. The terms inHq are the kinetic energy
operatorKq=−

∑n
i=1(h̄

2/2m)∇2
r i
; the potential energy operators for the fast subsystem

and the slow subsystem; and the interaction between the two. We group the last three terms
asV(R, r , t)=Vqq+Vqc+Vcc=Vq+Vcc.

The Ehrenfest method can be derived as a classical limit of time-dependent self-consistent
field method (TDSCF) (see, e.g., [7, 73]). This is a mean field method; i.e., the total wave-
function9 of the system is factorized into a single product of that for the slow and fast
particles [74],

9(R, r , t) = ψ(r , t)χ(R, t)e
(

i /h
∫ t 〈9|H |9〉R,r dt′

)
, (2)

whereψ andχ are supposed to be normalized. The phase factor introduced in this equation is
added for simplification of the final equations and the subscript to〈 〉 indicates which degrees
of freedom are integrated over. If one substitutes this equation into the time-dependent
Schrödinger equation (1) and multiplies from the left withχ∗ and integrates overR one
obtains an equation for the wavefunctionψ of the fast degrees of freedom. Similarly,
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multiplying byψ∗ and integrating over the fast degrees of freedom yields an equation for
χ . These equations are the standard TDSCF equations,

i h̄
∂ψ

∂t
= (Kq + 〈χ |V |χ〉R)ψ (3)

and

i h̄
∂χ

∂t
= (Kc + 〈ψ |Hq|ψ〉r )χ. (4)

The fast degrees of freedom move on an effective potential energy surface that is an average
field of the slow degrees of freedom, and vice versa. Feedback between the fast and slow
subsystems is incorporated in an average manner. These two equations have to be solved
self-consistently.

In order to obtain the classical limit for the slow degrees of freedom one can follow in the
footsteps of Messiah [7] and separate the wavefunctionχ for the slow degrees of freedom
in amplitude and phase factors.

χ(R, t) = A(R, t)e(i /h̄)S(R,t). (5)

When one substitutes this into (4) and separates real and imaginary parts (A andSare taken
to be real-valued here) one obtains the two equations

∂S

∂t
+
∑

I

(∇RI S
)2

2MI
+ 〈ψ |Hq|ψ〉r =

∑
I

h̄2

2MI

∇2
RI

A

A
(6)

and

∂A

∂t
+
∑

I

1

MI

(∇RI A
) · (∇RI S

)+∑
I

1

MI

A

2
∇2

RI
S= 0. (7)

The latter equation expresses continuity of flux [7]. The classical limit is obtained by setting
h̄ to zero. Note that ¯h does not appear in the latter equation. ¯h appears on both sides of (6) but
on the left-hand side it appears in〈ψ |Hq|ψ〉r , which is integrated over the quantum degrees
of freedom. Hence the classical limit is obtained by setting ¯h to zero on the right-hand side
of (6), which gives

∂S

∂t
+
∑

I

(∇RI S
)2

2MI
+ 〈ψ |Hq|ψ〉r = 0. (8)

This equation, together with (7), describes a swarm of independent classical trajectories
moving on the average potential energy surface of the fast particles. The solutionSof Eq. (8),
which is the Hamilton–Jacobi equation [75], is the classical actionS= ∫ t

(Kc−Vc) dt′. It
can be shown that the Hamilton–Jacobi equation is equivalent to the Newtonian equation
of motion [7]

F = −∇R〈ψ |Hq|ψ〉r , (9)
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whereF is the forcem(d2R/dt2). The separation into a classical and quantum mechanical
subsystem is made complete by setting the coordinatesR of the classical system to a
δ-function in (3) [76]

i h̄
∂ψ

∂t
= (Kq + V)ψ = Hqψ. (10)

These last two equations define the mixed quantum/classical dynamics within a mean field
approximation.

2.2. The Quantum Force: Hellmann–Feynman Theorem

The expression for forces on classical particles (Eq. (9)) is commonly rewritten in a more
suitable form that does not require the calculation of gradients of wavefunctions. When the
quantum wavefunctionψ is an exact solution of (3) the expression in Eq. (9) for forces on
classical particles can be simplified to [77]

F j (R(t)) = −
(〈∇R jψ |Hq|ψ

〉
r +

〈
ψ
∣∣∇R j Hq

∣∣ψ〉r +
〈
ψ |Hq|∇R jψ

〉
r

)
(11)

= −〈ψ∣∣∇R j Hq

∣∣ψ〉r ≡ FHF
j (R(t)). (12)

Equation (12) is known as the Hellmann–Feynman theorem. It is easy and useful to show that
it is true for for the case whereψ is an exact solution of the time-independent Schr¨odinger
equation

Hq(r ,R, t)ψ(r ,R(t)) = E(R(t))ψ(r ,R(t)), (13)

whereE is the total energy〈ψ |Hq|ψ〉r . Then〈∇R jψ |Hq|ψ
〉

r +
〈
ψ |Hq|∇R jψ

〉
r = E∇R j 〈ψ |ψ〉r = 0 (14)

when the quantum coordinates are integrated over all space. Note that “exact” in this context
means thatψ is an exact solution obtained by using a maybe-not-so-exact Hamiltonian.
Sometimes it is not possible to obtain exact solutions to the Schr¨odinger equation, in which
case the Hellmann–Feynman theorem is no longer valid.

2.3. Adiabatic Approximation

We have usedψ to denote a general quantum wave function. Assume that at timet = 0
the system starts out in a “pure” quantum state, i.e.,ψ equals a solutionφk of the time-
independent Schr¨odinger equation at that time

Hφk = εkφk.

The solutions of this eigenvalue equation are the energy eigenvaluesεk= εk(R(t))=
〈φk|Hq|φk〉r and the adiabatic eigenstatesφk=φk(r ;R(t)) for a given configurationR
at time t . So the adiabatic energy surfaces are obtained by solving the time-independent
Schrödinger equation and are parameterized by the classical configurationR. At a later time
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FIG. 1. An example of potential energy surfaces and accompanying wavefunctions for the middle quantum
proton in H5O

+
2 in the gas phase. (The quantum proton is depicted at its ground-state expectation value for

position.) Top: (a) non-equilibrium and (b) equilibrium configurations (oxygen, black circles; hydrogen, open
circles). Bottom: potential surface and wavefunctions for configurations shown. The wavefunctions are labeled
according to energy starting with one for the ground state. Note that in the top and bottom figures distances are
not scaled the same.

t ′ the system will generally have developed into an admixture of states

ψ(r ,R, t ′) =
∑

k

ck(t)φk(r ;R(t ′)). (15)

We will call this admixture a mixed state. In the adiabatic limit, however, the quantum
subsystem is assumed to immediately adapt its state to that of the classical subsystem so
that it remains in the initial quantum state (usually the ground state) at all times, i.e., the
wavefunction does not become a mixed state andψ =φk with k fixed. Many simulations
have been done within the adiabatic, or Born–Oppenheimer, approximation, where the
quantum system is assumed to remain in the ground state [8]. This approximation is valid
for systems in which the dynamics is dominated by that of the ground state. In many systems
the adiabatic approximation breaks down, however, and excitations from the initial state
become important in the time evolution of the system. This is called nonadiabatic dynamics.
Departure from adiabaticity becomes likely in regions where the quantum levels are close in
energy and in regions of strong coupling between the quantum states. Then proper inclusion
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FIG. 1—Continued

of nonadiabatic effects is important. Methods for simulation of nonadiabatic events (e.g.,
[1, 78–82]) will be discussed extensively.

2.4. Modeling the Interaction between Quantum and Classical
Degrees of Freedom: Pseudopotentials

Simulation of a mixed quantum/classical system within a wavefunction approach requires
determination of the eigenstates of the quantum subsystem for a given configuration of the
classical system. The interaction between the classical and the quantum subsystem has to be
calculated for this purpose. An approximation of both termsVqc andVqq (see Section 2.1),
i.e., the pseudopotential, needs to be found. For a general theory on the calculation of
pseudopotentials, see, for instance, Austinet al. [83].

A pseudopotential has to meet a set of requirements in order to be a sufficiently accurate
approximation to the true potential operator for the system. First, the energy conservation of
the total system should not be violated. Second, if dealing with an excess electron, the wave
function of the excess electron has to be orthogonal to the filled atomic orbitals of the solvent
atoms/molecules (Pauli principle). When dealing with an excess quantum proton, usually the
overlap of the proton wavefunction with that of the protons in the nucleus can be neglected
safely. Third, polarization effects of the atom due to the presence of an excess charge
have to be included. Finally, a pseudopotential should reproduce experimentally determined
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properties such as scattering cross sections, absorption spectra, etc. In order to meet this last
requirement interactions such as exchange effects, Coulombic interactions, and correlation
between the motion of the excess electron and the core electrons need to be included. It is
possible to construct a pseudopotential that incorporates the requirements exactly, but the
resulting pseudopotential is non-local; i.e., the interactions are not pairwise additive and
many-body effects have to be taken into account self-consistently. The construction of a
local pseudopotential is based on the assumption that the interaction of an excess quantum
particle with the classical particles is additive, i.e., that it can be written as a sum of separate
interactions with one atom.

An example of potential surfaces for a quantum particle and its wavefunctions is given
in Fig. 1. In this gas-phase H5O+2 system the middle proton is treated as a one-dimensional
quantum particle moving along the oxygen-oxygen axis. Two configurations are shown with
accompanying one-dimensional potential surfaces and adiabatic vibrational wavefunctions
as a function of the one-dimensional quantum coordinater along the oxygen–oxygen axis.
The potential for the quantum proton depends on the coordinates of all particles in the
system. In this figure one sees that the donor–acceptor distance greatly influences the shape
of the potential surface. For a larger donor–acceptor distance the potential is a double well,
while for a shorter distance it is a single well. The shape of the potential energy surface in
turn determines the shape, localization, and energies of the adiabatic eigenstates.

2.5. Nonadiabatic Dynamics and Branching Processes

In mixed quantum/classical systems the calculation of the forces is not a trivial issue.
Adiabatic simulation methods, in which the quantum subsystem is constrained to occupy
the singlei th adiabatic eigenstate at all times (ψ =φi ) are correct when the adiabatic
approximation is valid. The expression for the quantum force in this case is given by
−〈φi |∇R Hq|φi 〉r (assuming the Hellmann–Feynman theorem is valid) (Section 2.2). When
the adiabatic approximation breaks down, however, excited states play a role in the dynam-
ics, and propagation in time of an initially pure quantum wave function generally evolves
the wavefunction to a mixed state. The simplest way to include excited states is to let the
system evolve naturally into a mixed state and use a mixed stateψ = ∑i ciφi in the energy
and force calculation. If one treats the entire system quantum mechanically this is not a
problem. The dynamics of the total quantum mechanical system is correctly described by
mixed states. When the classical limit is taken in the mean field approach (Section 2.1),
however, the different treatment of classical and quantum degrees of freedom does not
always result in a correct description of the overall dynamics. The expansion of the total
wavefunction9 into a single product (configuration) neglects the correlation between the
different types of degrees of freedom. We illustrate this with an example.

Consider, e.g., a system that consists of a polar solvent in which a large solute complex
that has an ionic and a covalent state is immersed, as illustrated in Fig. 2. The ionic and
covalent states of this system are of different character and the orientation of the solvent
molecules around the solute is entirely different dependent on the state of the solute. The
charge separation within the solute complex in the ionic state orders the dipole moments of
the solvent molecules around the solute, while for the covalent state the solvent molecules
are oriented in a more random fashion. Assume that for this solvent–solute system the only
degree of freedom that needs to be treated quantum mechanically is the charge transferring
between covalent and ionic state (a hydride in this example). Using a mean field method
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FIG. 2. A complex immersed in a polar solvent; the solvent molecules consist of a positively charged part
(white) and a negatively charged part (black). When the complex is in a covalent state (a) the solvent molecules are
oriented rather randomly about the complex; in the ionic state (b), however, there is a distinct favorable orientation
around the solute for the solvent molecules. The charge distribution in the solute complex is pictured on parts of
the complex for clarity. Only the solvent molecules closest to the complex are shown.

the forces on the classical solvent are averaged over both ionic and covalent state wave-
functions at all timest > 0. This means that the forces are a weighted average of the forces
corresponding to the ionic state and the forces corresponding to the covalent state (where
the squares of the amplitudesci are the weights). This is a reasonably good description of
the situation when the dynamics of the system is dominated by one state, provided that one
is interested in properties of that dominant state. Little information, however, concerning
properties of the other non-dominant state can be obtained using a mean field method. Also,
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when both states of the system are important in the dynamics, an average treatment does
not reproduce the actual dynamics correctly.

When the classical dynamics depends strongly on the quantum path and multiple distinct
paths from an initial to a final state are possible in the dynamics we speak of a branching
process. A mean field method is not expected to work very well for describing branching
processes and one has to use a different approach. This approach is based on nonadiabatic
events, where departure form adiabaticity is modeled by state switches of the quantum
subsystem between different quantum states. This is called surface hopping. As in the other
methods the quantum and classical parts of the system have to be treated self-consistently.
The trajectories of the classical particles determine the probabilities for quantum transitions
and the quantum transitions, in turn, influence the classical trajectories. We focus on these
nonadiabatic methods in the remainder of this paper.

2.6. Separation of Degrees of Freedom: A Multi-configurational Approach

The separation of the degrees of freedom in a fast and slow subsystem in the surface
hopping approach is achieved by a route analogous to the Ehrenfest approach discussed
in Section 2.1 (for notation one is referred to that section) [74, 76, 84]. Instead of ap-
proximating the total wavefunction9 as a single product as in the Ehrenfest approach, a
multi-configurational expansion is used that includes the correlation between the different
degrees of freedom

9(r ,R, t) =
∑

k

χk(R, t)φk(r ;R). (16)

The fast particle basis functionsφk are assumed to be orthonormal and to be specified in
advance (hence the switch in notation fromψ toφ), i.e., that an adiabatic or diabatic basis is
used. Adiabatic surfaces are instantaneous solutions of the time-independent Schr¨odinger
equation. In principle they are linear combinations of diabatic surfaces. (For a review on
the use of a diabatic versus adiabatic basis see, e.g., Refs. [85, 86].) The slow particle wave-
function need not be normalized. Substitution of this expression into the time-dependent
Schrödinger equation and some manipulations yield a coupled set of equations for the
slow degrees of freedom and for the fast degrees of freedom, analogous to the expressions
obtained in the Ehrenfest approach. The slow degrees of freedom obey

i h̄
∂χk(R, t)

∂t
= Kcχk(R, t)+

∑
k′ 6=k

(Ekk′ − Dkk′)χk′(R, t), (17)

whereEkk′ = 〈φk|Hq|φk′ 〉r and andDkk′ is the nonadiabatic operator

Dkk′(R, t) = −
N∑

I=1

(
h̄2

2MI

〈
φk

∣∣∇2
RI

∣∣φk′
〉

r +
h̄2

MI

〈
φk

∣∣∇RI

∣∣φk′
〉

r∇RI

)
. (18)

Surface hopping is a classical analog of this expression, not an exact classical limit. As
explained nicely in a recent publication by Tully [76] the wavefunctionsχk of the slow
degrees of freedom can be separated again in amplitude,A, and phase,S, factors. After we
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obtain the classical limit by setting ¯h to zero, the equation

∂Sk

∂t
+
∑

I

(∇RI Sk
)2

2MI
+ 〈φk|Hq|φk〉r = 0 (19)

and the flux continuity equation

∂Ak

∂t
+
∑

I

1

MI

(∇RI Ak
) · (∇RI Sk

)+∑
I

1

MI

Ak

2
∇2

RI
Sk

=−
∑
k′ 6=k

Ak′

([∑
I

dRI

dt
· dkk′(RI )+ i

h̄
Ekk′

]
e−(i /h̄)

∫ t
(Ek′k′−Ekk) dt′

)
(20)

emerge. Heredkk′ is the nonadiabatic coupling vector

dkk′(R) = 〈φk | ∇Rφ
′
k〉r .

For the fast degrees of freedom the equation of motion is again given by (10). Equations
(19) and (20) describe motion of trajectories on each effective potential energy surface

Ekk = 〈φk|Hq|φk〉r , (21)

where the flux between the surfaces is governed by the terms containing the off-diagonal
elementsEkk′ or the nonadiabatic coupling vectordkk′ in (20). A practical exact solution to
these equations has not been obtained. The fact that trajectories are coupled in a non-local
manner hampers a direct solution of these equations. In surface hopping each trajectory
evolves independently of the others. This obviously is an approximation. In the next section
it will be shown that the expression for the flux between surfaces in surface hopping is
essentially equal to the right-hand side of (20) when one identifiesAk with the quantum
amplitude on each surfacek.

2.7. Molecular Dynamics with Quantum Transitions: History and Algorithm

The development of methods to deal with nonadiabatic effects in molecular dynamics has
a long history (see, e.g., [87]), in which a variety of classical, semiclassical, and quantum
mechanical approaches play a role. The most widely applied method is surface hopping,
with its many variants in which a state transition of the quantum particle is described by
a “jump” between the potential energy surfaces corresponding to the quantum states. In
1990 Tully proposed a new surface hopping approach, molecular dynamics with electronic
transitions (MDET) [1]. This method was originally developed for electronic transitions but
more recently has been applied to single proton transfer reactions [88] and been rechris-
tened molecular dynamics with quantum transitions (MDQT). The surface hopping method
MDQT allows quantum transitions at any time instead of at localized avoided crossings
only, as in the older methods [89]. Moreover, it allows transitions between any number
of coupled states maintaining quantum coherence between different “state switches.” A
swarm of classical trajectories is considered over the effective energy surfaces (20). The
system is allowed to make stochastic “hops” between the instantaneous quantum states
depending on the time evolution of the occupation probabilities of the states. At a given
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time t each trajectory is at a single potential energy surface, never on an average surface,
and the wavefunction that determines the forces on the classical particles is never a mixed
state. This is a simple solution to the problems that arise when a mixed-state wavefunction
is used. For the sake of simplicity, the switches between quantum states are assumed to be
sudden and to occur in infinitesimal time. It has to be pointed out, however, that in spite of
sudden state switches of a single trajectory, the ensemble of trajectories evolves smoothly
because the trajectories switch at different times. At each integration time step a decision of
whether to switch states according to a “fewest switches” algorithm governed by the quan-
tum mechanical probabilities is made. The switching procedure in MDQT ensures that, for
a large ensemble of trajectories and ignoring difficulties with classically forbidden states,
the fraction of trajectories assigned to any state at any time is equal to the average quantum
probability at that time.

Here we discuss MDQT in more detail (the equations can be found in many papers,
including Ref. [1]) and give some practical points for simulation and other points of interest.
Since surface hopping is best suited to the use of an adiabatic basis [76, 77] we represent
the formulation in terms of adiabatic eigenstates. The equations that are given are general,
however. The time-dependent quantum wavefunctionψ(r ,R, t) is expanded in a basis of
adiabatic eigenstatesφ j (r ;R(t)) that have energy eigenvaluesε j (t)= Ej j (t)=〈φ j |Hq|φ j 〉r
and depend parametrically on the classical trajectoryR(t);

ψ(r ,R, t) =
∑

j

cj (t)φ j (r ;R(t)), (22)

wherecj (t) are the (complex-valued) expansion coefficients, the quantum amplitudes. Sub-
stitution of this equation into the time-dependent Schr¨odinger equation yields the equations
of motion (eom) for the expansion coefficients

ċj ≡ dcj

dt
= −

∑
k

ck

(
d jk · Ṙ+ i

h̄
〈φ j |Hq|φk〉

)
, (23)

whered jk is the previously introduced nonadiabatic coupling vector

d jk(R) = 〈φ j (r ;R)|∇R|φk(r ;R)〉.

Note that the subscript is dropped from〈 〉; the brackets stand for integration over the
quantum degrees of freedom only. Comparison of this equation to (20) shows the analogy
between the amplitudeAj and the quantum amplitudecj (apart from the phase factor, which
is arbitrary). The diagonal termsd jk are zero for orthogonal wave functions. In the above
derivation of the eom, the chain rule〈

φ j

∣∣∣∣ ∂φk

∂t

〉
= 〈φ j |∇Rφk〉 · Ṙ (24)

was used. In simulations, however, the left-hand side of this equation is computed instead of
the right-hand side whenever possible in order to avoid the expensive gradient calculation.
In the adiabatic representation the〈φ j |Hq|φk〉-term in Eq. (23) is equal toεk(R)δ jk . In a
diabatic representation the nonadiabatic coupling vectorsd jk are zero [85, 86]. Note that
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the second derivative terms present in the nonadiabatic coupling in Eq. (18) are rigorously
absent here due to the fact that the coefficientscj depend on time only and not on the
classical coordinatesR as did the expansion coefficientsχ j .

Although the total wave functionψ is a mixed state, in surface hopping the forces on
the classical subsystem are determined by a single adiabatic eigenstate, the occupied state.
The heart of the MDQT method is the methodology to decide which state is occupied at
which time. The diagonal elements of the time-dependent density matrix with elements
akj (t)= c∗k(t)cj (t) give the occupation probabilities of the instantaneous adiabatic eigen-
states. Thus the number of trajectories—out of a swarm ofN trajectories—on potential
energy surfacej at timet is aj j (t)N. The off-diagonal elements give the phase coherence.
The probability that a trajectory in statej at time t switches out of this state during the
time stepδt should be chosen in such a way that an ensemble of trajectories has the cor-
rect statistical distribution of occupied states and transition probabilities at all times. Tully
proposed the hopping probability

gjk(t, δt) = max

(
0,

bkjδt

aj j (t)

)
, (25)

where

bkj = 2 Im

(
akj

h̄
〈φk|Hq|φ j 〉

)
− 2 Re(akj dk j · Ṙ), (26)

subject to the constraint that the fewest possible switches occur. The coefficientsbkj are
related to the probability flux bẏaj j =

∑
k 6= j bjk (from Eq. (23)). The total change in

occupation probability of a given statej contains contributionsbjk from all other states
involved. When statej is occupied at a given time, a transition to another given statek
may occur when the probability flow is fromj to k, i.e,bjk < 0 (which impliesbkj > 0 and
hencegjk > 0). Whenbjk > 0 the hopping probability from statej to statek is set to zero.
The transition probabilities are compared to a uniform random numberζ∈ [0, 1] to decide
which state the system will jump to in the next time step. Assume that statej is occupied
(and this state is neither the ground state nor the first excited state). Then the system will
hop to the ground state (labeled 1) ifζ ≤ gj 1; a switch to the first excited state will occur
if gj 1<ζ ≤ gj 1+ gj 2, etc. This procedure ensures that for an ensemble of trajectories and
for infinitesimalδt , the rate of change of number of trajectories in a given statej equals
ȧj j δt , as required: The probability flux from one state to another is correct. For an ensemble
of trajectories, the fraction of trajectories at a given time in a certain state is equal to the
average occupation probability of that state at that time for all times. This is only true,
however, in absence of problems due to classically forbidden states (we will return to this
later in this section). Also, for complicated systems of practical interest averaging over an
ensemble of trajectories may be computationally very expensive, if not impossible [90–92].

The probability of hopping approaches zero as the time stepδt is reduced. Even though
each individual trajectory changes when one changes the time step (because they will switch
at different times, resulting in completely different dynamics of the individual trajectories)
the results for an ensemble of trajectories are independent of the time step as long as the
time step is chosen sufficiently small. The MDQT method is summarized in Fig. 3.

In general energy is not conserved when the system jumps from one potential energy
surface to another. To correct this, a velocity adjustment should be made. The adjustment
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FIG. 3. Overview of MDQT. (Note that the velocity reversal conforms with the original MDQT.)

is usually made in the direction of the nonadiabatic coupling vector, but other approaches
are known [93]. The nonadiabatic coupling vector couples with the velocity of the classical
particles asṘ · d jk so only the component of the velocity parallel to the nonadiabatic
coupling vector is adjusted when a trajectory jumps to another state. This means that at
those instants the nonadiabatic coupling vector has to be calculated explicitly. The coupling
vector can be calculated from the off-diagonal Hellmann–Feynman forces:

d jk(R) = 〈φ j |∇R Hq|φk〉
εk − ε j

, j 6= k (27)

(This expression can be derived from the fact that∇R〈φ j |Hq|φk〉=0 for exact eigen-
functionsφ.) Note thatd jk =−d∗k j and the diagonal elementsdkk are zero for ortho-
gonal wave functions; also note that if one imposes bond constraints on atoms within a
molecule, the nonadiabatic coupling vector has to satisfy these constraint forces [88]. If there
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is not enough energy available in the velocity component parallel to the coupling vector, the
intended hop should be rejected. According to the quantum subsystem it is time to switch
states, but the classical subsystem cannot provide enough energy for that: It is classically
forbidden. These failed hops may occur occasionally simply because of an “unlucky” draw
of a random number, but for some systems and for low energies the fraction of rejected hops
may be substantial. This is a warning sign of possible breakdown of the mixed quantum/clas-
sical description. The branching ratios of the trajectories then no longer equal the average
of the squared quantum amplitudes. There are two views on how to handle rejected hops
(assuming that a mixed quantum/classical description is valid). The first view is that velocity
in the direction of the nonadiabatic coupling vector should be reversed [88]. The physical
picture behind this reasoning is that the system tries to hop to an upper surface, cannot make
it, and falls back. In the limit of infinitesimal time stepδt→ 0 this is equivalent to the way it
is dealt with in methods that use the so-called Pechukas force in the time propagation (Sec-
tion 2.9.1). The second view is to continue the trajectory as if nothing happened [80]. The
idea is that for some systems keeping the same velocities after a rejected state switch results
in an error in the occupation probabilities that is less severe than the violation of momentum
conservation that would occur when the velocities were reversed. In MDQT momentum
generally is not conserved when nonadiabatic transitions occur, but under normal conditions
the violation is considered to be minor. In our experience the violation of momentum conser-
vation after velocity reversal is of the same order as the violation that occurs for a successful
hop.

The quantum amplitude coefficients can be rapidly oscillating in time, which can easily
be seen when one substitutes [84]

ψ(r ,R, t) =
∑

j

c̃ jφ j (r ,R)e
+(i /h̄)

∫ t

0
dt′ε j (R(t ′)) (28)

into the time-dependent Schr¨odinger equation to obtain

˙̃cj = −
∑

k

c̃k

([
d jk · Ṙ+ i

h̄
〈φ j |Hq|φk〉

]
e−(i /h̄)

∫ t

0
dt′[εk(R(t ′))−ε j (R(t ′))]

)
(29)

(which shows the analogy to (20) including the phase factor). If the energy gapε j − εk is
large, the phase factor is a rapidly oscillating function in time and the time average of˙̃cj = 0.
Only when the energy gap is relatively small or the states are very strongly coupled will
amplitude be redistributed among the differentc̃ j ’s. Leaking of occupation probability from
one state to another only takes place when their energy levels are close for a reasonable
amount of time. To avoid problems in integrating the oscillatory coefficientsc one can
integrate the expression for thec̃’s or a similar expression [88] instead.

In MDQT an independent trajectory approximation is made to the non-locally interact-
ing trajectories obtained by a multi-configurational treatment (Eqs. (19) and (20)). There
is no interaction between different trajectories in MDQT; each trajectory is completely in-
dependent from the other trajectories in the ensemble. Within one trajectory, however, the
equations of motion for the expansion coefficients (Eq. (23) or alternatives such as (28))
are integrated coherently throughout; i.e., the phase factors are retained at all times. This
means that within one trajectory there are interference effects of the quantum amplitudes
(the expansion coefficientscj (t)) and when a trajectory passes through subsequent regions
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of strong coupling there will be interference in the excitation probabilities (St¨uckelberg
oscillations [94]).

2.8. Mean Field versus Surface Hopping: An Illustration

In order to summarize and clarify the ideas introduced here Fig. 4 shows possible
paths in a two-state model for a mean field method, a naive surface hopping algorithm

FIG. 4. Upper and lower adiabatic energy curves as a function of time (solid lines) and the potential energy
of a possible trajectory (dashed line) for (a) mean field method, (b) naive surface hopping, and (c) MDQT. The
arrows indicate the direction of the path.
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FIG. 4—Continued

(where the switching probability depends on instantaneous occupation probability only),
and MDQT. The difference between the first method and the latter two lies in the evalua-
tion of the forces on the classical particles, while the difference between the latter two lies
exclusively in the hopping criterion. In Fig. 4 two adiabatic energy curves are given as a
function of time, i.e., the potential energy surfaces for (classical) nuclear motion if either
of these states is occupied. In these graphs the energy of a trajectory—or, in other words,
the potential energy surface on which the nuclei move—is depicted as a dashed line. Note
that due to time propagation under different forces in each method, the adiabatic energy
curves diverge on a longer time scale than depicted here. In Fig. 4a, a trajectory obtained
by the mean field method is shown. With the mean field method, the trajectory moves on a
single adiabatic surface until the region of strong coupling is reached (where the surfaces
are close in energy). After the trajectory leaves this region, the nuclear motion evolves
on a potential energy surface that is a weighted average of both adiabats. This method
cannot correctly describe branching processes, as shown earlier. Figure 4b depicts a tra-
jectory obtained by a naive surface hopping method. This method behaves similarly to
the mean field method: Until the region of strong coupling is reached the system is on a
single adiabatic surface, but after leaving the region of strong coupling the system keeps
switching states incessantly. This effectively results in movement of the classical nuclei on
the same average potential energy surface as obtained by a mean field treatment, which is
undesirable in many applications. The numerous state switches occur because this method
does not incorporate a fewest switches criterion. If at a given time the flux in occupation
probability from a statei to another statej is positive then more trajectories switch from
from i to j than from j to i . This results in the correct overall flux of trajectories from
statei to state j , but the flux flow is not obtained in the most “straightforward” man-
ner. With a fewest switches criterion only switches fromi to j occur. The importance
of the fewest switches criterion is underlined by the trajectory obtained with MDQT, as
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shown in Fig. 4c. The trajectory moves on a single adiabatic potential energy surface at
all times, and only in the region of strong coupling do a few hops occur between the sur-
faces. In the region of strong coupling motion on an effective surface is correct; MDQT
relies on the fact that the time spent in these strong coupling regions is short. Clearly,
the fewest switches criterion in MDQT is essential for a proper description of branching
processes.

As pointed out previously, however, there are situations for which a mean field treatment
is the method of choice. In situations were the mean field method works, it has the advantage
that it has a well-defined classical limit, is independent of representation (i.e., whether a
diabatic or adiabatic basis is used [85, 86]), conserves total energy naturally, and includes
feedback between the classical and quantum subsystem, which is not the case in some mixed
quantum/classical methods. In some cases a mean field approach is shown to outperform
surface hopping [95] and in some instances surface hopping is shown to perform rather
poorly [96]. Especially for cases where the regions of strong nonadiabatic coupling are
extended, surface hopping has some problems. It is the mixed quantum/classical method of
choice, however, for the applications we consider in this paper.

2.9. Alternatives to Molecular Dynamics with Quantum Transitions

2.9.1. The Pechukas force.In search of an appropriate way to mix quantum and classical
mechanics, Pechukas [97, 98] developed a semiclassical theory for time propagation of a
mixed quantum/classical system. The separation of degrees of freedom is based on the same
principles as discussed in Sections 2.1 and 2.6. Pechukas’ work is based on a generalization
of Hamilton’s formalism and Feynman’s path-integral formulation of quantum mechanics
[10]. He formulated a semiclassical theory of potential scattering and derived “classical”
equations for the relative motion of two colliding atoms when they undergo an internal
quantum transition. The expression for the force in this formalism has been used in mixed
quantum/classical simulations of various systems.

The HamiltonianH is split into a nuclear kinetic energy part,Kc, and everything else,
Hq(r ,R). As usual,R are the coordinates of the nuclei (that will ultimately be treated
classically), andr specifies the internal states of the atoms, for example, electronic, ro-
tational, or vibrational states. Propagation of the system from{r ′R′t ′} to {r ′′R′′t ′′} under
this Hamiltonian is described by the full propagatorK (r ′′R′′t ′′ | r ′R′t ′). For calculation of
the mixed quantum–nuclear dynamics computation of the full propagator is not necessary,
however. Instead, it is sufficient to calculate a reduced propagatorKβα, whereKβα gives the
probability of an internal transitionα→β while the atoms move from the space-time point
{R′t ′} to {R′′t ′′}. This reduced propagator can be evaluated in the Feynman path-integral
notation and the full time propagation is divided intoP time slices ofε= (t ′′ − t ′)/P. The
path-integral expression can be approximated by a short-time expression for sufficiently
small time slices, i.e., largeP (ideally P→∞). This allows factorization of the propa-
gator into a potential and a kinetic energy part as a reasonable approximation to the full
propagator. This considerably simplifies the expression to be evaluated.

In the classical limit, ¯h→ 0, only the immediate neighbors of stationary phase points
contribute to the path integral. In the semiclassical approximation it is assumed that the
magnitude of the transition amplitude of stateα to stateβ changes much more slowly with
variations in the path than its phase. Stationary phase paths contribute most significantly
to the reduced propagatorKβα. The reduced propagatorKβα combined with the stationary
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phase requirement leads to the classical equation of motion

MR̈(t) = −Re

{ 〈β(t, t ′′)|∂Hq(r ,R(t))/∂R(t)|α(t, t ′)〉
〈β(t, t ′′) | α(t, t ′)〉

}
≡ FP(R(t)), (30)

whereR(t) is a stationary phase path. The above equation is the well-known Newtonian
equation of motionMa=F in disguise, where the force is the Pechukas forceFP. This ex-
pression is much more complicated than that for the Hellmann–Feynman force (Eq. (12)).
The wavefunctionsα(t, t ′)andβ((t, t ′′)are dynamical wavefunctions. Relating to our previ-
ous notation,α(t, t ′)≡ψα(t), whereψα(t) is obtained by propagating adiabatic stateα≡φα
in time from t ′ to t . The dynamical wavefunctions are a solution of the time-dependent
Schrödinger equation and are generally a mixed state obtained by time propagation un-
der the time-dependent Schr¨odinger equation with time-dependent HamiltonianHq(t). The
denominator of the expression for the Pechukas force〈β(t, t ′′) |α(t, t ′)〉 is the transition am-
plitudeTβα from stateα to stateβ. Tβα is time reversible and is best understood as the overlap
of the dynamical mixed state wavefunctionα(t ′′, t ′)≡ψα(t ′′) with the adiabatic eigenstate
β at timet ′′ (or equivalently of the back-propagated stateβ(t ′, t ′′) with stateα at timet ′).

The Pechukas force describes a semiclassical path for the classical subsystem when
the quantal subsystem evolves from stateα to stateβ. An important point to note is that
the Pechukas force is not predictive. The force along a trajectory depends on the entire
trajectory itself. Hence, the forces and the trajectories need to be solved self-consistently.
The computational effort to achieve self-consistency depends on the physical problem at
hand and cannot be accomplished for large-scale simulations. This is one of the problems of
the method and is associated with the bifurcation of classical paths (Section 2.5). In practice
this limits the self-consistent propagation to short times. Also note that the expression for
the Pechukas force intrinsically includes a finite time interval. Pechukas showed that the
energy and angular momentum are rigorously conserved along a trajectory. The differences
in energy associated with a quantum transition are balanced by a change in energy of the
classical subsystem. The same holds for the angular momentum.

2.9.2. Nonadiabatic methods based on non-Hellmann–Feynman forces.Webster,
Rossky, and Friesner developed a nonadiabatic simulation method (the WRF method for
short) [78] that combines the Pechukas approach with a surface hopping method. The
Pechukas force determines the best classical trajectory accompanying the quantum evolu-
tion from a given initial state to a given final state. The self-consistent propagation associated
with the use of the Pechukas force is limited to short times for mixed quantum/classical
simulations (see Section 2.5) and to overcome the problems associated with long-time
mixed state propagation the quantum subsystem is projected onto an adiabatic eigenstate at
intervals. An initial state of the systemψα(ti )=α is selected atti from the set of adiabatic
eigenstates{αi (ti )} and the time-dependent Schr¨odinger equation is solved. The state of the
systemψα(t) at a later timet f will have developed an admixture of adiabatic states and
the overlap of this wavefunction with the adiabatic eigenstateβ ∈ {βi (t f )} at this time gives
the transition amplitudeTβα =〈β |ψα(t f )〉. An analog to the stochastic surface hopping
method MDQT [1] is used to determine into which instantaneous eigenstate the system
should be projected at a given time. The squares of the transition amplitudesTβα, instead of
thegαβ as in MDQT, define the probability of transition to each adiabatic state. The decision
of which adiabatic eigenstate will be occupied at a given classical time step is made on the
first iteration through the self-consistent calculation of the path and the force along the path.
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Theoretically, energy is rigorously conserved in this method, without any need for velocity
rescaling. In practice, energy conservation may be hard to obtain.

A comparison has been made between the WRF method and MDQT by the authors of the
former method [99]. This comparison was made for two-state systems that do not explicitly
incorporate bath dynamics but include an arbitrary dephasing time scale. The results do not
seem to strongly favor use of the one method over the other. No conclusion about which is
the “better” method can be drawn. Note that the WRF method and MDQT give the same
results in two limits: In the limit of infinitesimal time step the effect of the Pechukas force
is equivalent to the velocity rescaling used in MDQT when a state transition occurs. In the
adiabatic limit the Pechukas force reduces to the Hellmann–Feynman expression.

A hybrid method has been developed that combines the use of the Pechukas force with
Tully’s surface hopping method [80]. The transition probabilitiesgαβ (rather thanTαβ as in
WRF) are obtained by back-propagation of the wave functions. Analogous to the original
WRF method, this method selects an instantaneous adiabatic eigenstate after each classical
time step that determines the quantum forces. For details the reader is referred to the article
of Cokeret al. [80] or to the review article by the same author [84], where all the above
issues are discussed.

Recently another mixed quantum/classical formalism for nonadiabatic QMD was pre-
sented by Murphrey and Rossky [100]. Their method was developed for quantal subsystems
represented by approximate wavefunctions. It is based on a stationary-phase approximation
of the classical bath and a variational principle for the quantum transition amplitudes. The
approximate trial wavefunctions differ only by a first order variation from the exact solutions
of the time-dependent Schr¨odinger equation and are assumed to give the stationary value
for the transition amplitudes [101]. A variational expression for the transition amplitudes
is derived that is stationary with respect to small changes in the trial wavefunctions. Thus
first order errors in the trial wavefunctions result in second order errors in the transition
amplitudes. The expression for the quantum force is slightly more complicated than in the
WRF approach. It contains the gradient not only of the HamiltonianHq but also of the trial
wavefunctions ˘α andβ̆. (The appearnace of gradients of the wavefunctions in this expres-
sion is expected because we are dealing with approximate wavefunctions (see Section 2.2).)
The expression for the “generalized stationary phase” quantum force is

FG(R(t)) = −Re

{∇R〈β̆(t, t f )|Hq(r ,R(t))|ᾰ(t, ti )〉
Tβα

}
, (31)

whereTβα is given by the same expression as in WRF. The force and trajectory calculations
have to be done self-consistently in the same manner as in WRF, and the energy is conserved
independent of the energy difference between initial and final states. This method suffers
from the same problems regarding long-time evolution as the WRF approach, and surface
hopping is used to limit mixed state propagation to short times.

Although so far this algorithm has only been applied to a simple test problem, the results
seem promising. The authors find that the results converge faster with increasing basis set
size (for the expansion of the eigenstates) than when the Hellmann–Feynman force is used.
Moreover, they find that for a limited basis set their results are much closer to the exact ones.
Compared to simulations based on the Pechukas force they find that this algorithm is more
robust with respect to the time step and only slightly more expensive computationally speak-
ing. The appearance of the gradients of the approximate wavefunctions in the expression
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for the force, however, could make this algorithm less tractable for other systems than those
considered by these authors. The effort to calculate the gradients depends greatly on the
choice of the basis functions for the trial wavefunctions and may be substantial or even
close to prohibitive (see Section 4).

The major disadvantage of methods based on the Pechukas force is the required iterative
procedure for the quantum force calculation. In search of the ideal nonadiabatic algorithm
yet another method was proposed [102]. This method combines stochastic surface hopping
(MDQT) with the mean field force. It is based on the notion that the limitation of the
system to pure (adiabatic) states (as is done in MDQT) of the system may not be correct in
extended regions of nonadiabatic coupling. The method uses a combination of mean field
propagation between hops and projection onto a single adiabatic state when the mean field
approximation becomes invalid. The fewest switches hopping criterion ensures the correct
branching of classical trajectories, while the mean field force,

FMF(R(t)) = −〈α(t, ti )|∇R Hq(r ,R(t))|α(t, ti )〉

(Eq. (12)), provides the “best” classical trajectory accompanying the quantum evolution
(just like the Pechukas force). This method has been applied to model systems (the same
models that were used to test MDQT originally) and results show that in this case this
method works better than other methods based on an adiabatic force without increase in
computational effort. An advantage is that the classical trajectories are robust with respect
to the quantum representation (adiabatic vs diabatic representation), a virtue it inherited
from a mean field description. This method appears to have combined two virtues: a simple
and intuitive force calculation, and a correct description of branching processes.

2.10. Quantum Decoherence

Quantum decoherence is an important issue in mixed quantum/classical simulations.
The total wavefunction for system plus bath (Eqs. (2), (16)) has a phase to which both
fast and slow degrees of freedom contribute. Upon taking the classical limit for the slow
degrees of freedom, the phase information for this part of the system is lost. This phase
information is important, however, since it influences the branching ratios of the trajectories.
For times shorter than the decoherence time there is interference between the wavefunctions
of the slow degrees of freedom for the different possible trajectories. For longer times, the
different possible trajectories diverge and there no longer is interference between these
different trajectories. This is known as quantum decoherence. In mixed quantum/classical
simulations, however, these interference effects are included in an approximate way or not at
all. For a more rigorous investigation of quantum decoherence effects, methods which rely
on a semiclassical treatment [34, 35] rather than a classical one are obviously better suited.

In MDQT one averages over an ensemble of trajectories, which naturally washes out the
coherence within the quantum subsystem, but this does not account for the decoherence
effects of the classically treated subsystem. This arises because when one averages over
an ensemble of trajectories, one is averaging over probabilities, neglecting interference
between the quantum amplitudes of different trajectories. This is the independent trajectory
approximation mentioned earlier in Section 2.7. Since MDQT is a mixed quantum/classical
method, this is rigorous, but obviously neglects possibly important effects such as nuclear
tunneling.
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The WRF method explicitly includes a time interval. It is typical (although not necessary)
to drop the phase factors of the quantum amplitudes at the end of each time interval. This
way an explicit decoherence time is included. (Note that in WRF averaging over initial
conditions is necessary as in MDQT.) Typically the decoherence time is chosen equal to
the classical time step. The choice of this time step is a rather subtle matter. Since the
WRF method relies upon interpolation of the potential energy surface within one classical
time step, the time step should be chosen small enough so that interpolation is a reasonable
approximation. On the other hand, the time step should not be shorter than the time scale
of the coherent dynamics of interest; see, e.g., [78, 103].

The interaction between the system and the bath dictates length and time scales for
quantum decoherence [79, 104]. It is possible to estimate this decoherence time scale for
the classical degrees of freedom and use this as the time step in the WRF method in order
to approximate the effect of the quantum character of the classically treated degrees of
freedom. Recently Bittner and Rossky [79, 105] developed a method to incorporate the
quantum coherence loss in simulations of mixed quantum/classical systems. This method
includes characteristic time and length scales that characterize the decay in coherence due
to the differences in bath dynamics for each possible quantum state. It has been tested on
a nonadiabatic model charge transfer reaction and shows that a shorter decoherence time
scale diminishes the nonadiabaticity, recovering adiabatic dynamics in the limit of rapid
decoherence.

In recent work [103, 106] (note that the latter paper corrects an error in the former) the
same authors estimated the decoherence time scale on the fly for the hydrated electron
system. Their method is based on the frozen Gaussian approach by Heller [107] (to incor-
porate nuclear tunneling effects), and the work of Neria and Nitzan [108, 109]. The nuclear
decoherence time is estimated from the overlap of wave packets evolved on the different
effective energy surfaces of the system. It is important to note that the decoherence time is
not constant during a single trajectory, let alone for different trajectories. Also, for each pair
of states a different decoherence time applies. With extra effort it is in principle possible to
determine these decoherence times on the fly for each trajectory. The use of a single deco-
herence time in simulations is a further approximation. Based on the above simulations the
authors determined an average decoherence time for an electron in water and heavy water,
and used that as the decoherence time in WRF simulations. Using this methodology they
were able to explain the anomalous isotope effect that is observed in water for the nona-
diabatic transition rate. Based on the difference in mass between H2O and D2O only, one
would expect the transition rate to be twice as fast in water as in heavy water. The fact that
the dynamics on average evolves coherently for twice as long in D2O, however, balances
this effect and almost no isotope effect is observed, as is seen experimentally [110, 111].

In summary, the nonadiabatic mixed quantum/classical methods presented in these sec-
tions mainly differ in the time propagation of the wavefunctions, the force calculation, and
the treatment of quantum decoherence. Obviously other mixed quantum/classical methods
than the ones discussed here have been developed as well; see, e.g., [112–117].

2.11. Application: The Hydrated Electron

The literature devoted to the hydrated electron is extensive. Despite all the studies that
have been carried out, however, many features of the hydrated electron, including some
of the basic physics, are not yet entirely understood. It is common to invoke a close
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analogy to simple solvated anions. One assumes that a cavity in the solvent is occupied by
the excess electron, which is surrounded by favorably oriented water molecules. Structural
aspects of interest include the size and geometry of the cavity, and the solvation struc-
ture. Spectral properties are also of great interest and have been measured experimentally
[118–125].

The hydrated electron system is a good candidate for mixed quantum/classical treatment
and the simulations of a solvated electron are numerous. Earlier work dealt with the problem
within the adiabatic approximation (see, e.g., [65, 66, 126–129]) and was in part able to

FIG. 5. Electron density in water for the lowest four adiabatic eigenstates: (a) ground-state density; (b)–(d)
first three excited states. Isosurfaces of 10% of the density are shown. The electron wavefunctions are represented
on a grid and the water molecules are omitted for clarity.
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FIG. 5—Continued

reproduce and explain experimental spectral properties. It was postulated that inclusion of
excited states and nonadiabatic events is essential to reproduce the experimentally observed
absorption spectra. When nonadiabatic methods gained interest it was shown that features
in the absorption spectrum are indeed due to nonadiabatic transitions (see, e.g., [67–71, 78,
130, 131]).

Structural information about the hydrated electron is plentiful. It is known from both
experiment and computer simulation that the eigenstates lowest in energy are self-trapped
and occupy only a small volume fraction of the total volume while higher excited states
are more extended. Typical electron densities for the instantaneous adiabatic eigenstates
lowest in energy of an equilibrated excess electron in water at room temperature are shown
in Fig. 5. From simulations one learns that the equilibrium ground state is a nearly spherical
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s-like state while the first three excited states are nondegeneratep-like states located in the
same cavity as the ground state. We estimated the radius of the equilibrated ground-state
cavity to be 3.1± 0.1Å from the participation ratio [92]. The excluded volume effect is also
reflected in the ground-state radial distribution functionsge−--O andge−--H. The coordination
numbers for oxygen and hydrogen atoms around the electronic center of mass indicate that
the water molecules are bond oriented rather than dipole oriented around the electronic
density.

Dynamical information is also obtained relatively straightforwardly in time-dependent
simulation methods. Nonadiabatic simulation methods allow one to obtain dynamical in-
formation for processes in which multiple quantum states play a role. This dynamical
information relates to experimentally observed spectra. For example, in order to simulate
and study relaxation after photoexcitation one can inject the electron into the excited state of
a water configuration and investigate the relaxation process to the ground state. A possible
evolution path of the adiabatic energies after injection of the electron in an excited state is
illustrated in Fig. 6. This kind of information is not directly obtainable from experiments.
Also note the extremely short time scale of the dynamics. In the relaxation one sees dif-
ferent types of interaction. Differences in coupling between states leads to a competition
between different relaxation channels. About half of the trajectories show a rapid cascade
through the manifold of states down to the ground state, while in the other trajectories the
first excited state remains occupied for a considerable time (comparable to or longer than
shown in Fig. 6). The latter observation explains features in the experimental absorption
spectrum that were not understood before.

FIG. 6. Example of relaxation dynamics after injection into an excited state. The adiabatic energies are shown
as a function of time and the occupied state is marked with a circle. This simulation was done with the MDQT
method.
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3. SURFACE HOPPING AND THE SIMULATION OF INFREQUENT EVENTS

3.1. Methods

In some reactions the energy barrier that has to be overcome to evolve from reactants
to products is so high that the reaction rate is extremely low. Dynamical simulation of this
type of system requires a different approach from straightforward trajectory integration. A
trajectory that is started at the reactant side generally stays there for a very long time before
it reaches the energy barrier. The fluctuations in energy in the system are so small with
respect to the barrier height that a trajectory reaching the top of the barrier is an infrequent
event. For the study of infrequent events it is not feasible to start a trajectory in the reactant
region and hope it will eventually go over the barrier and end up at the product region. This is
computationally prohibitive even for the most patient. Some tricks have to be invented to deal
with this [132–135]. Recently a new method has been developed for this purpose for mixed
quantum/classical systems [136]; it is called “multiple potential energy surface–molecular
dynamics of infrequent events” (MPES-MDIE). The objective in creating this method was
to develop a method to simulate infrequent events that gives the same results as “ordinary”
MDQT at a considerably lower computational cost. The basis of this method is transition
state theory (TST), originally developed by Wigner, combined with MDQT; not only rate
constants but also real-time dynamical properties of reaction mechanisms can be obtained.

It has long been known from classical simulations that simulation of infrequent events
is feasible only when trajectories are started at or near the dividing surfaceS (see, e.g.,
Ref. [137]). The dividing surface is defined to separate reactants from products and in
transition-state theory the equilibrium flux through this dividing surface determines the rate
constant. Typically the dividing surface is chosen to be located at or near the top of the energy
barrier for the ground state. In the following it is assumed that this dividing surface is the
same for all quantum states. Instead of considering a “straightforward” trajectory evolving
from reactants to products, we split the trajectory into two parts. The trajectory is started
at the dividing surface. The first part of the trajectory is obtained by integrating backward
in time from the dividing surface to the reactant region. The second part is obtained by
forward integration in time to the product region. The forward and backward parts of the
trajectory combine into the complete trajectory.

In the original formulation of TST, recrossings of the dividing surface are not allowed
so the dividing surface is crossed once and only once in a reactive event. TST can be
straightforwardly reformulated to allow recrossings of the dividing surface, however, and
the dynamical factorF accounts for recrossings. The dynamical factorF is obtained from
the number of times the dividing surface is crossed in a complete trajectory. The rate
constant then is a product of the equilibrium flux through the dividing surface and the
dynamical factor. Originally TST only dealt with a single potential energy surface but
multiple potential energy surfaces can be included straightforwardly, as was done for the
development of MPES-MDIE.

Starting a trajectory “somewhere in the middle,” however, is not trivial when stochastic
surface hopping is used because this method has a memory: The nature of the quantum
wavefunction cannot be determined without knowing the history of the trajectory. The
quantum amplitude of each adiabatic state (22), which state is occupied, and the transition
probabilitiesgjk (26) (orTβα when using a WRF-like surface hopping method) at a given
time all depend on the history of the trajectory. Naively starting with a pure state at the
barrier, i.e., aδ-function for the expansion coefficients (and hence occupation probabilities),
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is not correct and, moreover, results in a dependence of the rate constant on the choice of
the dividing surfaceS. These problems are overcome in MPES-MDIE by the use of a
modified hopping probabilityf jk in the backward part of the trajectory. This local hopping
probability depends neither on history nor on the quantum amplitudes. Becausef jk does
not have a memory the quantum probabilities can be chosen as aδ-function for the starting
configuration near the barrier.

It is obvious that trajectories obtained with a modified hopping probability are different
from those that would have been obtained with MDQT but the correct results can be re-
covered. Assume we are interested in one particular trajectory. The initial staten for the
backward trajectory is chosen from a Boltzmann distribution (remember that TST is an equi-
librium theory) and the expansion coefficients are set to the correspondingδ-function. (Note
that surface hopping itself does not strictly obey microscopic time reversibility because the
decision of whether a state switch is allowed is based on different classical velocities in
a forward and time-reversed trajectory. Therefore one expects that the distribution on top
of the barrier is not strictly Gaussian, but the deviations are very small.) The trajectory is
integrated backward in time using the local hopping criterion and the “backward” quan-
tum amplitudes until the reactant region is reached. Its steps are retraced exactly forward in
time, except that the trajectory is started with the “correct” pure state att = 0. In the retraced
trajectory the “original” switching probabilitiesgjk are calculated at each time step but no
actions are taken based on them. The trajectory—the sequence of hops—is assumed to be
reversible in time. The transitions in the retraced forward trajectory have to occur at the
same times as in the backward trajectory; otherwise the backward and retraced trajectory
would diverge. The retraced forward trajectory gives the correct quantum amplitudes and
hopping probabilities at the barrier, which are then used to further integrate the trajectory
forward in time (using the correct probabilitiesgjk) until a specified product state is reached.

The correct switching probabilities are determineda posteriorifor a backward trajectory
started at the dividing surface. The starting conditions of the backward trajectories are
artificial, however, and the dynamics of the backward trajectories is based on the incorrect
switching probabilities so it may or may not represent the true dynamics well. In order to
recover the correct dynamics each trajectory is given a statistical weight to indicate how
well the trajectory represents the true dynamics. Thus, instead of a single straightforward
trajectory a swarm of trajectories starting at the dividing surface is integrated. Each trajectory
is weighted to ensure that one obtains the same quantum probabilities at all times from
trajectories based on the approximate probabilitiesf jk as from trajectories integrated with
the correct switching probabilitiesgjk . In order to achieve this the independent trajectories
are weighted afterward with a weighting functionW that is a product of weighting factors
w(tl ) that are calculated on the fly at each time steptl :

W =
∏

l

w(tl ). (32)

The weighting functionsw are determined during the retraced trajectory by calculating

w(tl ) = gjk

f jk
when a hop was attempted to statek

= 1−∑ j 6=k gjk

1−∑ j 6=k f jk
when no hop was attempted (33)
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at a given timetl and for occupied statej . Note that the weighting functions do depend on
the history of the trajectory. Also note that if a hop is attempted in the backward trajectory
at a given time step either there occurs a hop (the hop is successful) or a velocity reversal
takes place (the hop is unsuccessful) when using MDQT as the hopping algorithm. This
has to be reproduced in the forward retraced trajectory. The choice for the local hopping
criterion f jk is in principle arbitrary, but it is desirable to choose it in such a way that it
behaves similarly to the original criteriongjk . This minimizes the number of trajectories
necessary to obtain statistically significant results.

The explicit retracing of the steps of the backward trajectory can be eliminated in the
determination of the weighting function. An alternative way to obtainW is to consider
nef independent sets of backward trajectories simultaneously, wherenef is the number of
included states in the expansion (22). The initial amplitudes for the sets of backward trajec-
toriesC i

j are chosen as aδ-function at the barrierC i
j = δi j (the superscripti denotes a set of

amplitudes and the subscriptj indicates the state as usual). Then the linear combination of
amplitudes from the backward trajectories that results in the “correct” amplitudes at the re-
actant region (aδ-function) can be determined from matrix inversion. Again the trajectories
are assumed to hop at the same times as the backward ones. This method is computationally
more involved than the explicit retracing of the backward trajectory forward in time, which
is conceptually more straightforward.

The heart of the MPES-MDIE method is the general strategy for obtaining the dynamical
factor by weighing independent trajectories. Although MPES-MDIE has been formulated
based on MDQT, in principle other surface hopping methods with memory could be used
such as the WRF method [78]. The equilibrium flux can be calculated in a variety of ways
as well.

3.2. Example Application

So far the infrequent event method MPES-MDIE has been applied to the calculation
of the reaction probability and dynamical factorF in a one-dimensional two-state model
[136]. This model could easily be solved without application of MPES-MDIE because of
its simplicity but it nevertheless served as a useful test case. A wide range of temperatures
was considered and the logarithm of the reaction probability was shown to be inversely
proportional to the temperature. The dynamical factorF was shown to decrease with tem-
perature, i.e., there are more recrossings at lower temperature, as expected. This method
promises to be very useful for simulation of proton and electron transfer reactions, for ex-
ample, for proton transfer in bulk water. Under equilibrium conditions this is a slow process
and the excess proton relocates slowly through the solvent. (Note that this is a completely
different problem from the one we will consider in the next section, where we deal with
non-equilibrium situations.)

4. SURFACE HOPPING FOR MULTIPLE QUANTUM DEGREES OF FREEDOM

The previous sections dealt with surface hopping methods that can be equally well ap-
plied to multiple quantum degrees of freedom as to a single quantum degree of freedom
provided that the adiabatic eigenstates of the system can be calculated accurately. The latter
is not trivial. The extension to multiple coupled quantum degrees of freedom is challenging
because the correlation among the quantum particles must be included in a computationally
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tractable way. Methods based on the Feynman path-integral formalism [138–146] have been
utilized to treat multiple hydrogen atoms quantum mechanically, but typically these meth-
ods employ a transition state theory approximation rather than directly predict real-time
dynamical properties (except Ref. [138]).

One method that has been applied to the quantum dynamical simulation of multiple
nuclei or vibrational modes is the TDSCF method [73, 147–151]. In TDSCF anN-particle
wavefunction is approximated as a single product ofN one-particle wavefunctions (compare
to Section 2.1). In this way theN-particle time-dependent Schr¨odinger equation is separated
into N coupled single-particle equations of motion, which leads to substantial computational
savings. Each quantum particle moves in a time-dependent mean potential that is obtained
by averaging over the motion of all of the other quantum particles in the system. The single-
particle equations of motion and the mean potentials in which the quantum particles move
must be solved self-consistently. In the application of TDSCF to mixed quantum/classical
systems (often called the Q-C TDSCF method [149–152]) the classical particles move in a
time-dependent mean potential obtained by averaging over the motion of all of the quantum
particles in the system. TDSCF has been extended to incorporate correlation among the
quantum particles [153–168] using, for example, multi-configurational TDSCF methods
[155–164], but not in the context of mixed quantum/classical simulations. One limitation
of TDSCF is that it cannot properly describe branching processes, i.e., processes involving
multiple pathways going from an initial state to a final one [153, 154] (see Section 2.5).
The accurate description of branching processes is critical in proton transfer reactions
because typically there are two distinct states of very different character involved (one ionic
and one covalent), and the system must accordingly experience different forces from each
of these states.

Recently a method for dealing with more than a single quantum degree of freedom in
mixed quantum/classical surface hopping simulations was developed [81]. This method
was developed for quantum protons or vibrational modes but adaptation for, e.g., quantum
electrons is in principle straightforward. The drawbacks of this method are that it is not
variational and that it cannot be proven that the Hellmann–Feynman forces are rigorously
correct. More recently a variational method was developed based on this method [82]. Both
methods are called multi-configurational molecular dynamics with quantum transitions
(MC-MDQT). (The older method will be denoted MC-MDQT∗.) These methods are based
on a self-consistent field calculation of the quantum adiabatic eigenstates. Note that this is a
different approach from that used in TDSCF methods discussed previously. The MC-MDQT
methods describe branching processes well.

4.1. Wavefunctions for Multiple Quantum Degrees of Freedom

So far we have assumed that the adiabatic eigenstatesφi can be calcuated. For a single
quantum degree of freedom the one-particle quantum adiabatic eigenstates are standardly
expanded in a set of basis functionsχ (note that theseχ ’s have nothing to do with those in
Section 2.1)

φi (r ;R) =
K∑
α=1

ciα(R)χα(r ;R), (34)

whereK is the number of basis functions for the quantum particle. The calculation of the
adiabatic eigenstates of the HamiltonianHq is equivalent to calculation of the expansion
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coefficientsciα. The energy eigenvaluesεi and eigenfunctions (given by coefficientsci ) are
given by the general eigenvalue equation

Hqci = εi Sci , (35)

whereH is theK × K Hamiltonian matrix with elements〈χα|H |χβ〉 (where again〈 〉 stands
for integration over the quantum coordinates), and the overlap matrixShas elements

Sαβ = 〈χα |χβ〉. (36)

The eigenvaluesεi and eigenfunctionsφi , i = 1, . . . , K , are obtained by diagonalization of
the Hamiltonian matrix. Depending on the basis set size and the nature of the problem there
are many ways to calculate (some of) these solutions to the time-independent Schr¨odinger
equation [63, 65, 78, 169–175].

For N quantum particles, the total quantum wavefunctionψ is expanded in a basis
of instantaneous adiabatic eigenstates of the quantum HamiltonianHq, which are now
multiparticle wavefunctions8i ,

ψ(r ,R, t) =
∑

i

ci (t)8i (r ;R(t)). (37)

TheN-dimensional eigenvalue equation (time-independent Schr¨odinger equation) that has
to be solved is

Hq(r ,R)8i (r ;R) = Ei (R)8i (r ;R). (38)

(N-dimensional refers to the number of quantum degrees of freedom. Each quantum degree
of freedom may bem-dimensional,m= 1, 2, 3, so technically the set isNm-dimensional.)
In a straightforwardN-dimensional generalization of MDQT theN-particle adiabatic states
are expanded inN-dimensional basis functions analogous to the expansion in the one-
particle case. This approach is called a complete configuration interaction (CI) treatment,
and here forN quantum degrees of freedom the basis set expansion is

8i (r ;R) =
K∑
J

ci J (R)ξJ(r ;R), (39)

whereK is the number ofN-dimensional basis functionsξJ . TheN-particle basis functions
ξJ are products of the one-particle basis functionsχ

(k)
jk ,

ξJ(r ;R) =
N∏

k=1

χ
(k)
jk (r k;R), (40)

where the superscript(k) labels the quantum degrees of freedom, 1, . . . , N. Note that
j = ( j1, . . . , jN) is a set of indices wherejk is one of theKk basis functions for quan-
tum particlek. For example, for two quantum degrees of freedom the indexJ= (1, 1)
denotes the basis functionξ(1,1)=χ(1)1 χ

(2)
1 , a product of the basis functionsχ(1)1 andχ(2)1 .

(A commonly used notation for such a product isχ(1)1 ⊗χ(2)1 .) In Eq. (39) the total num-
ber of N-dimensional basis functions equalsK = ∏N

k=1 Kk, whereKk is the number of
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one-particle basis functions for quantum particlek. Note that the formalism is presented in
terms of Hartree products because it is assumed that the quantum particles occupy entirely
different regions in space. This method can be generalized by using Slater determinants.

When one uses a complete CI expansion of the total wavefunction (39), solving the
time-independent Schr¨odinger equation quickly becomes computationally intractable with
increasing number of quantum particlesN and number ofN-particle basis functions.
This problem can be surmounted by using a self-consistent field (SCF) formulation. In
a self-consistent field approach, the totalN-dimensional eigenvalue equation for theN-
dimensional adiabatic states is split into a set of one-dimensional coupled equations for
one-particle adiabatic eigenstatesφi . The N-particle adiabatic states8i can be obtained
either in a single-configurational (SC-SCF) method or a multi-configurational (MC-SCF)
method. A configuration in this context denotes a product of single-particle adiabatic states
φk. In a single configuration method each adiabatic state of the total system is approximated
by a single product of one-particle wavefunctions. The approximation of the adiabatic states
by single configurations is given by

8i (r ;R) = ξJ(r ;R) ≡
N∏

k=1

φ
(k)
jk (r k;R). (41)

Here, J is a set of indices defining the configurationsJ= ( j1, j2, . . . , jN) and jk is the
state of quantum particlek belonging to theN-particle configurationξJ . Here an index
J= (1, 1) denotes the configurationξ(1,1) = φ

(1)
1 φ

(2)
1 . A single configuration description

results in easy-to-solve equations, but fails to include important correlation between the
quantum particles [153, 154] as expected (Sections 2.1 and 2.5).

In order to accurately incorporate quantum correlation, a multi-configurational method
is needed (compare to Section 2.6). A multi-configurational description leads to more com-
plicated equations. The adiabatic eigenstates are expanded in a basis ofQ configurations,
i.e., they are a mixture of configurationsξJ ,

8i =
Q∑
J

di J (R)ξJ(r ;R) (42)

=
mk∑

j1=1

· · ·
mk∑

jN=1

di j1,..., jN (R)φ
(1)
j1 (r1;R) · · ·φ(N)j N (r N;R). (43)

Here thedk J’s are the so-called configuration interaction coefficients,mk is the number of
one-particle states for a given particlek, andQ is the number of included configurations
Q = ∏N

k=1 mk. If a complete basis were used, the expansion would approach the exact
wavefunction. In practice, however, the summation is limited.

4.2. Multi-configurational Molecular Dynamics with Quantum Transitions

Self-consistent calculation of the adiabatic eigenstates8i as described above is straight-
forwardly combined with MDQT for incorporation of nonadiabatic dynamics. In the original
formulation of multi-configurational molecular dynamics with quantum transitions (MC-
MDQT∗) [81] the multi-configurational approach to the total wavefunction is combined with
the use of effective Hamiltonians. Each quantum particle “feels” an effective Hamiltonian
heff in which the interactions are averaged over the wavefunctions of all other quantum
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particles. Then the set of equations

h(k)eff (r k,R)φ
(k)
i (r k;R) = ε(k)i (R)φ(k)i (r k;R) (44)

has to be solved self-consistently, where each equation is solved in the same manner as for
a single quantum degree of freedom. The effective Hamiltonian for particlek and occupied
state8i is given by

h(k)eff = tk +
Q∑
J

d2
i J

〈
N∏

k′ 6=k

φ
(k′)
jk′ (r k′))|V(r ,R, t)|

N∏
k′ 6=k

φ
(k′)
jk′ (r k′))

〉
, (45)

wheretk is the kinetic energy operator for this particlek, and the second part of the equation
is the effective potential energy surface for this particle when statei is occupied. An example
of effective potential energy surfaces for two one-dimensional quantum protons is given
in Fig. 7, where in addition to the effective potential energy curves also the lowest two

FIG. 7. (a) Chain of three water molecules in which hydrogens that form hydrogen bonds within the chain are
described quantum mechanically (and labeled H1 and H2) while all other degrees of freedom are treated classically.
H1 and H2 are restricted to one-dimensional motion on the donor–acceptor axes in this example. For illustrative
purposes the quantum protons are placed at the expectation values of their coordinates in this kind of figure.
(b) One-dimensional effective potential for each quantum proton with two eigenstates lowest in energy as a
function of quantum coordinatesrk along the oxygen–oxygen axes.
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one-particle adiabatic eigenstates are depicted for each particle. The use of this effective
Hamiltonian provides a clear physical picture of the proton transfer mechanisms. The system
is in a single configuration far from regions of strong coupling, while only in regions of
strong coupling the are wavefunctions multiconfigurational.

MC-MDQT∗ describes branching processes well and it was applied to a simple one-
dimensional model systems of proton transfer reactions with up to three quantum protons.
It was shown that this method is accurate and fast for these systems. The occupation prob-
abilities of the eigenstates and the fraction of trajectories in each state at a given time
were compared to results from a complete CI calculation for two quantum protons and
were in excellent agreement. MC-MDQT∗ is not a variational method, however, and one
cannot rigorously prove that the Hellmann–Feynman forces equal the exact forces. Al-
though the Hellmann–Feynman force is identical to the exact force for the exact wavefunc-
tion (see Eq. (12)–(14)), it has been shown to differ from the exact force for some types
of approximate wavefunctions [176, 177]. As a result, Pulay derived corrections to the
Hellmann–Feynman force for electronic wavefunctions [176, 177]. The analogous correc-
tion terms for proton (or vibrational) wavefunctions are numerically difficult to calculate
with the MC-MDQT∗ method. In general calculation of these Pulay corrections may not
be easy or may even be computationally prohibitive if an analytical expression cannot be
derived.

In the newer MC-MDQT method both of the above problems are addressed. It is a
variational method and it was proven that the Hellmann–Feynman forces are exact under
certain conditions. For details see Ref. [82]. The adiabatic eigenstates are again expanded
according to Eq. (42). In order to determine the totalN-particle wavefunction and the one-
particle adiabatic eigenstates, or in other words to calculate the coefficientsdn J andc(k)iα , the
variational principle is applied to the total energy of alln adiabatic statesEn = 〈8n|Hq|8n〉.
This is done subject to the orthonormality conditions for the one-particle states〈

φ
(k)
i

∣∣φ(k)j

〉− δi j = 0 (46)

or

Kk∑
αβ

c(k)iα c(k)jβ S(k)αβ − δi j = 0, (47)

whereS(k)αβ is the overlap matrix of the basis functionsχ , and that for the configurations

Q∑
J=1

d2
n J − 1= 0 (48)

for all n eigenstates. From now on we will drop the subscript denoting the adiabatic staten
since all the sub- and superscripts in the following tend to be confusing as it is. The equations
below are for a given adiabatic state, and for each adiabatic state analogous equations apply.
Equations (47) and (48) lead to the sets of equations

∂

∂dL

[
E − η

(
Q∑
J

d2
J − 1

)]
= 0 (49)
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and

∂

∂c(k)lλ

[
E −

mk∑
i j

ε
(k)
i j

(
Kk∑
αβ

(
c(k)iα c(k)jβ S(k)αβ

)− δi j

)]
= 0, (50)

whenη and theε(k)i j ’s are Lagrange multipliers. The first set of equations reduces to the
standard eigenvalue equation

Hd = ηd, (51)

where the matrixH has matrix elementsHI J ≡〈ξI |Hq|ξJ〉. As in standard electronic struc-
ture theory, the coefficientsdI can be calculated by diagonalizing theH matrix. The second
set of equations can be written as a matrix equation from which thec(k)iα coefficients, i.e.,
the one-particle adiabatic eigenstates, can be calculated [178].

The MC-MDQT method as implemented is a multi-grid method. The wavefunctions of
each quantum degree of freedom are represented on a grid that is defined by the positions
of two classical particles (donor and acceptor). The quantum Hamiltonian depends on both
quantum and classical degrees of freedom (i.e.,Hq(r ,R, t)), and the coefficients depend on
the classical degrees of freedom (i.e.,dJ(R) andc(k)iα (R)). In addition, each basis function
χ(k)α depends on a set of parametersp(k)αν (including, for example, the center and the width),
which may depend explicitly on the classical degrees of freedom. The expression for the
force is then for each componentRµ, whereµ indicates both a classical particle and a
component (i.e.,x, y, or z):

FRµ = −
∂E(R)
∂Rµ

= − ∂

∂Rµ

〈
8
(
dJ, c

(k)
iα , p(k)αν

)|Hq(r ;R)|8
(
dJ, c

(k)
iα , p(k)αν

)〉
. (52)

It was shown that with an appropriate choice of basis functions the Hellmann–Feynman force
(12) is rigorously identical to the exact force in MC-MDQT [82]. There are two conditions
that the basis functionsχ(k)α need to satisfy in order to achieve this. (Note that these are
sufficient but not necessary conditions.) The first condition is that the origin for the basis
functionsχ(k)α for quantum particlek exactly follows the motion of the classical particles
associated with this quantum particle. The second condition is that the basis functions depend
only on the distance to the origin of the basis function and other constant parameters, such
as the width, that do not depend on the classical coordinates. In this manner the expensive
calculation of Pulay corrections is avoided.

In practice a way to initialize the MC-MDQT method at every time step is required.
In principle one could use the values from a previous time step as a starting point for the
self-consistent calculations, but this requires quite a large number of configurations in order
to obtain sufficient flexibility in the wavefunctions. Alternatively the MC-MDQT∗ method
can be used as a startup. For the systems we studied the initial wavefunctions calculated by
MC-MDQT∗ needed only little refinement. Apart from the multi-configurational mixing that
occurs during branching processes, in most instances the wavefunctions could be accurately
described by a single configuration. Although more complicated to program, convergence
with the MC-MDQT method is slightly faster than with the MC-MDQT∗ method.
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4.3. Application: Proton Transport along Water Chains

Reactions in which multiple protons are transfered play a critical role in many important
chemical and biological processes, for example, a wide range of enzyme reactions (see, e.g.,
[179–182]. Moreover, in transmembrane proteins such as bacteriorhodopsin [183, 184] and
photosynthetic reaction centers [185, 186], protons are transported across a membrane
through a series of proton transfer steps involving water molecules and the side chains of
amino acid residues in the protein. In this section we focus on proton transport along chains
of hydrogen-bonded water molecules, which is thought to play an important role in the fast
translocation of protons over large distances in these proton pumps [187].

A number of simulations of proton transfer reactions in solution have been done; see, e.g,
[139–146, 152, 188–202]. Most of the studied proton transfer reactions are single-proton
transfer reactions, where only one hydrogen atom is treated quantum mechanically, and
are not easily extendable to processes involving coupled multiple proton transfer steps,
where many hydrogen atoms must be treated quantum mechanically. Recently numerous
simulations of proton transfer in water have been performed [138, 145, 146, 203–206].
In particular, Pom`es and Roux used Feynman path-integral methods to study the equi-
librium properties of protonated chains of water molecules [145, 146], and Lobaugh and
Voth used the centroid molecular dynamics method to study the dynamics of a single-
proton transfer reaction in water [138]. The work summarized here differs from previous
work in that quantum dynamical non-equilibrium simulations of multiple proton trans-
fer reactions in chains of water molecules were performed using the MC-MDQT method
[207–209]. Proton transfer along protonated chains in an external electrical field of three
and four water molecules was investigated. A protonated chain of four water molecules
is thought to be responsible for the proton shuttle mechanism in the bacteriorhodopsin
proton channel. In order to drive the proton transfer process the effects of the protein on
the chain of water molecules were mimicked. A linearly increasing external electric field
was applied to the water chain to model the field exerted by a protein, and harmonic re-
straints were applied to the oxygen atoms to model the structural constraints of the protein.
Only the transferring hydrogen atoms (two or three in this case) were treated quantum
mechanically due to computational limitations arising from the need to calculate multidi-
mensional integrals for the many-body polarization terms in the employed water potential
model [210–212]. For further details see Ref. [207]. Note that in these simulations the
system was in its electronic ground state, while the protons were doing the nonadiabatic
dynamics.

The MC-MDQT method was tested on a protonated chain of three water molecules where
two protons were treated as one-dimensional quantum particles [82]. The simulations were
initiated in configurations where the excess proton had been stabilized on one end of the
chain by an external electric field. In these initial simulations themselves, however, the
external field was turned off at timet = 0. The agreement between the energy eigenvalues
obtained by a full CI calculation and MC-MDQT (which is an order of magnitude faster)
was excellent for the four adiabatic states lowest in energy when only nine configurations
were used in MC-MDQT. The forces were also in excellent agreement.

In subsequent simulations, the external field was ramped in order to drive the proton
transfer process. The effect of the ramping rate and the strength of the harmonic restraints
on the oxygen atoms, i.e., the stiffness of the chain due to structural constraints of the
protein, on the transfer rates and the importance of excited states in the dynamics were
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FIG. 8. Snapshots of configurations during a sample trajectory of the protonated trimer with harmonic re-
straints force constantks= 150 kcal mol−1 Å−2 and ramping rate1E= 106 V cm−11t−1 at times (a)t = 0.000 fs,
(b) t = 3.125 fs, and (c)t = 9.375 fs. (1t = 0.0625 fs.) Note that for the initial non-equilibrium configuration the
applied electric field|E| =5× 107 V/cm points toward the left end of the chain in order to keep the quantum
protons, H1 and H2, in place. The applied field is then increased linearly in time during the trajectory.

investigated. In Fig. 8 an example trajectory is shown for the protonated trimer. In all trimer
trajectories a sequential mechanism was observed at early times in the evolution.

In these simulations, the ramping rate of the external field directly controlled the transfer
process. It was observed that the transfer process is direct and fast for rapid ramping of
the external field, whereas the transfer process is more indirect and involves alternative
pathways for slow ramping rates. This affects the importance of nonadiabatic events. For
the highest ramping rates the process was primarily adiabatic. Only for the slowest ramping
rate were nonadiabatic effects considerable. Nonadiabatic events were mainly observed
after the maximum value for the external field was reached and the second proton moved
back and forth around its midpoint before forming a new OH bond. Nonadiabatic dynamics
did not become important until after the transfer process was completed, however.
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Another factor that influences the importance of nonadiabatic dynamics is the flexibility
of the chain. Different stiffnesses were investigated ranging from an entirely flexible chain
to a very stiff chain. Increased flexibility of the chain increased nonadiabatic effects for a
given ramping rate of the external field. This phenomenon arises in part from the larger
temperature increase for more flexible chains. For the protonated tetramer the same trends
were observed.

These simulations indicate that the fluctuating electric fields and structural restraints
of the protein environment strongly affect the dynamics of proton transport along water
chains. In addition, these simulations illustrate that nonadiabatic effects play an important
role in the proton transfer dynamics of water chains under certain non-equilibrium condi-
tions. Nonadiabatic effects may not be as important in proteins such as bacteriorhodopsin,
however, because of thermal dissipation. Moreover, nonadiabatic effects may not play a
significant role in the protein environment because the proton is quickly transferred to an
amino acid after moving down the water chain. The MC-MDQT method is currently used to
study the dynamical effects of solvation by solvating various parts of the chain with explicit
water molecules [213]. Moreover, MC-MDQT will be used to study proton transport along
a water chain in bacteriorhodopsin to investigate the structural and dynamical effects of a
specific protein environment.

5. SUMMARY

In this paper mixed quantum/classical methods were discussed for computer simulation
of nonadiabatic dynamics, i.e., of processes in which excited states play a prominent role.
The methods summarized here all recognize the fact that a mixed-state description of the
quantum subsystem is often correct only for very short time scales. The methods hence all
use various surface hopping algorithms to overcome the problems associated with mixed-
state propagation for longer time scales. At this point no conclusive evidence is known as
to which method is the best.

The advantages of the MDQT method [1] are that the forces are easy to evaluate and that
the correct occupation probabilities of the quantum states are obtained. A disadvantage for
complicated systems is that an ensemble of trajectories has to be integrated in order to damp
the quantum coherence. A decoherence time or a coherence damping factor could be defined
explicitly but clashes to some extent with the philosophy of this method. So far the coherence
is dropped only rarely in applications of this method. The advantage of most methods based
on the Pechukas force [78, 100] is that an explicit decoherence time is defined so that less
averaging over trajectories is needed. Also the quantum character of the classical particles
can be partially included in this way. This can also be seen as a disadvantage, however:
Defining a decoherence time is tricky. Not only does it vary during a trajectory, but it also
differs between different pairs of states. A definite disadvantage is that the Pechukas force is
not predictive and hence the force calculation is far from simple. Another method combines
surface hopping with a mean field force for short time scales [102]. Here an advantage is
that the force calculation is simple while the combination with the fewest switches criterion
from MDQT guarantees that the correct occupation probabilities of the states are obtained.
An advantage over MDQT is that this method appears to be more robust with respect to
representation (adiabatic vs diabatic), but the latter method has not been extensively tested
yet. Obviously all methods discussed do require averaging over initial conditions.
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In addition we summarized methods based on combination of MDQT with other tech-
niques. The first is a combination of MDQT with the ideas of transition-state theory and
is a method for simulation of infrequent events. The second is a combination with a multi-
configurational self-consistent field calculation of the adiabatic eigenstates for the sim-
ulation of multiple quantum degrees of freedom. Several applications were given as an
example.

The field of mixed quantum/classical simulation techniques is far from static. The systems
that can be investigated grow with the growing computer power. Mixed quantum/classical
treatment will remain the method of choice for many systems for which complete quantum
mechanical dynamical treatment remains impossible in spite of increasing computational
resources. Semiclassical methods are very promising as well, however.
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