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This paper gives an overview of mixed quantum/classical simulation techniques
based on the ideas of surface hopping (Tully, 1990). Basics such as the separation
of a system into a classical and a quantum mechanical part are addressed. First, the
Ehrenfest approach, which relies on a single-configuration approximation to the total
wave function, is explained. Then an analogous multi-configurational approach, to
which surface hopping is an approximation, is given. The surface hopping method
developed by John Tully is explained in detail. Several other methods are summa-
rized and applications are discussed briefly to illustrate the scope of these meth-
ods. (© 1999 Academic Press

1. INTRODUCTION

Computer simulations have contributed significantly to the understanding of many ct
ical, physical, and biochemical phenomena. Some types of simulation provide inform:
on static or equilibrium properties of a system only, but other methods, such as mole
dynamics, directly mimic real-time dynamics so that dynamical processes can be stud
detail. The latter class of simulations is our main interest in this paper. Molecular dyna
simulations have been done at many “levels,” ranging fadinmitio simulations to entirely
classical simulations. Many of the systems of interest are large because most reactior
place in solution. Quantum effects play a significant role in many of these reactions.
quite a challenge to simulate such systems because on the one hand all interactions
the system have to be incorporated, while on the other hand the significant quantum e
have to be accounted for as well.
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The most ambitious approach is to treat the entire system gquantum mechanically. (
rently, however, exact quantum dynamical simulations are restricted to dealing with sn
systems on short time scales because of the formidable computational cost involved.
most straightforward approach, on the other hand, is to neglect quantum effects or tc
clude them in some effective way and then treat the entire system classically. Class
simulations are conceptually simple. If one knows how the particles in the system int
act, one can compute the forces between them and solve Newton’s equations of motic
propagate the system in discrete time. This is straightforward and computationally ch
(compared to doing quantum calculations). Dynamics can be investigated over long t
scales and, moreover, relatively large systems can be studied. Although patience is s
virtue, nowadays a classical simulation can easily cover the nanosecond range time ¢
while dealing with a system of on the order of 10,000 atoms or even more (see, for a re«
example, Ref. [2]). Obviously simulation within the classical limit is the method of choic
for alarge number of systems. Modeling interactions between particles remains a challe
however. This can be illustrated, for instance, by the multitude of available potential moc
for simulation of bulk water (to name a very few [3-5]).

If quantum effects are known to be important, modeling the system within a classi
treatment fails to accurately reproduce experimentally observed quantities. A compron
between an entirely quantum mechanical treatment and a completely classical one is sin
tion within a mixed quantum/classical framework. The quantum character of a few selec
degrees of freedom is included explicitly while the remainder of the system is treated ¢
sically. An advantage is that a larger—although mainly classical—system can be stuc
while the “most important” quantum effects are incorporated. Separation of the total syst
in a classical part and a quantum mechanical part is not trivial since classical and quar
dynamics are incompatible in principle. A key issue is self-consistency. The degree:s
freedom that are treated quantum mechanically must evolve correctly under influenc
the classical degrees of freedom, while the motion of the classical degrees of freedom in
must depend correctly on that of the quantum degrees of freedom. An accurate treatme
this latter feedback is especially challenging. There are a number of standard approach
describe the dynamics of the quantum degrees of freedom under the influence of clas
degrees of freedom, such as the classical path method [6]. This method, however, fai
include the influence of the quantum dynamics on the dynamics of the classical syst
In this paper we discuss two classes of methods that attempt to treat the quantum
classical degrees of freedom in a self-consistent way. The first class of methods is b
on a mean field treatment (see, e.g., Ref. [7]) (Section 2.1) and the second one is su
hopping [1] (Section 2.7). Depending on the mixed quantum/classical method of cho
and the complexity of the system typically dynamics can be studied over a range of a
tens of femtoseconds to a few hundred picoseconds. The longer time scales are possib
simulations in which the quantum dynamics is adiabatic, i.e., when the Born—Oppenhei
approximation is valid. Then the quantum subsystem adjusts itself infinitely fast to 1
motion of the classical particles and remains in its initial state. The number of degree:
freedom that can be treated quantum mechanically may be limited, especially for meth
based on wave functions, and the memory requirements for large-scale applications
increase dramatically.

In this paper an introduction to wave function-based methods is given [8]. Methods ba
on path integrals [9-20], which are widely used for incorporation of quantum effects, :
not discussed, however. Path integral methods are very well suited to the study of struc
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or equilibrium properties of a system or, in combination with transition state theory, to
calculation of rate constants. A disadvantage is that it is generally much harder to ex
real-time dynamical properties [21, 22]. A notable exception in that respect is cent
molecular dynamics [23—-30], a promising method based on the centroid variable in the
integral formulation [9]. An advantage of path integral-based methods over wave funct
based methods is that often many more degrees of freedom can be treated quantum me
cally.

In the methods discussed in this paper the system is separated in a strictly classice
and a quantum mechanical part, although some of the derivations rely on a semiclas
formulation. Nuclear quantum effects such as tunneling are not incorporated at all
best are treated in a phenomenological manner. Semiclassical methods or mixed qua
semiclassical methods are not discussed. Recent developments in this area [31-37] ai
promising for dealing with the kind of systems discussed in this paper. Also, this pa
deals exclusively with methods in which interactions in the system are modeled in adva
This obviously introduces approximations and inaccuracies. A method that does not re
preassigned interaction potentials is the Car—Parrinello simulation method [38, 39]. |
the forces are determined on the fly from electronic structure calculations. Car—Parrir
is typically used for classical dynamics (see, e.g., [40—-42]), although recently it has &
combined with path integral methods in order to incorporate quantum effects [43], an
generally limited to systems of a small number of molecules.

The outline of this paper is as follows. The Introduction briefly summarizes the molec
dynamics method and properties that are generally of interest in this kind of simulat
Section 2 explains the basic ideas of mixed quantum/classical simulations. First, the
aration of the system into “fast” (quantum mechanical) and “slow” (classical) degree:
freedomis explained within a mean field treatment. Then several issues such as the adie
or Born—Oppenheimer, approximation and the interaction between quantum and clas
degrees of freedom are discussed. Second, it is shown that the separation of degrees «
dom for surface hopping methods can be obtained analogously to the mean field case
“molecular dynamics with quantum transitions” surface hopping method is discusse
detail. Limitations of both mean field methods and surface hopping methods are menti
in the course of this section. The subsequent two sections deal with more “sophistice
methods. The first summarizes a method for the study of infrequent events (Section 3)
second describes a method with which to calculate quantum wave functions for more
a single quantum degree of freedom (Section 4). Each section includes an application
illustration of the methods discussed. We conclude in Section 5.

1.1. Classical and Quantum Molecular Dynamics

Athorough review of classical simulation techniques can be found in Allen and Tildes
[44] and a more recent book by Smit and Frenkel [45]. An experimental condensed pl
system that contains on the orderef0?2 particles is often modeled with a limited numbet
of particles within a volume, which is called the simulation box. Often periodic boundar
of the simulation box are applied in order to mimic an infinitely large system. In general «
would like to choose a system as small as possible (because that is cheap computati
speaking) while avoiding finite size effects, i.e., artifacts, due to an insufficiently lal
system. Since mixed quantum/classical simulations are more computationally expe!
than classical ones it is even more crucial to balance cost against the likelihood of artif
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The interaction between atoms is governed by their internal electronic structure. In s
ulations based oa priori modeled interactions each atom type has a specific interacti
potential. A common way to simplify the calculation of the total potential energy is 1
approximate it with a sum over pairwise interactions dependent on the interatomic distan
This approximation is reasonable for most types of interaction; only inherent many-bc
effects such as polarization may not be adequately described by a pairwise decompo:
potential. A potential model for van der Waals type interactions usually consists of a ref
sive core with an attractive tail such as the empirical Lennard—Jones potential. Simula
of classical dynamics is straightforward in principle. The forces are calculated from f
interaction potential, and Newtonian equations of motion are integrated with an appropr
integrator (see, e.g., [46, 47]). In a mixed quantum/classical molecular dynamics simi
tion the classical degrees of freedom undergo Newtonian dynamics as in a purely clas:
simulation. The only difference is in the forces on the classical degrees of freedom, as
be discussed in subsequent sections. In simulations, classical or mixed quantum/clas
there are a few subtleties including the treatment of long-range electrostatic interacti
(see, e.g., [48-51]), the treatment of intramolecular interactions, or, alternatively, the c
straining of molecular conformations (e.g., [52-54]) and obtaining of properties within t
thermodynamic ensemble of interest (e.g., [55-59]).

A large number of properties can be calculated in a molecular dynamics simulation ra
ing from structural properties to dynamical and spectral properties. When quantum deg
of freedom are involved in principle these properties can be calculated analogously to
classical case, but especially transport properties may suffer from poor convergence. |
discussion and references on this topic, see [44]. Structural information, such as radial di
bution functions, structure factors, and coordination numbers, can be obtained. Dynar
information includes diffusion coefficients (see [60—62] for some examples dealing w
excess electrons) and other transport properties such as viscosity and thermal conduc
For mixed quantum/classical systems, spectral properties are also of interest. The dens
states, the absorption spectrum, the mean excitation energy (band gap between grounc
and first excited state), and the onset of the continuum of excited states can be detern
(e.g., [63-66]). More recently pump-and-probe experiments have been simulated [67-
These experiments yield time-resolved information on the spectral evolution, the so-ca
spectral traces. When the time resolution is sufficient this method not only serves to pr
the spectral composition of the absorption band, but also provides a means to investi
the coupling between the properties of the quantum subsystem and the dynamics o
classical system.

2. MIXED QUANTUM/CLASSICAL DYNAMICS

2.1. Separation of Degrees of Freedom: The Ehrenfest Approach

This section explains commonly used approximations and simplifications for the si
ulation of a system in which quantum effects of a limited number of degrees of freed
are important. The system is separated in a subsystem of slow degrees of freedom, w
will ultimately be treated as classical, and fast degrees of freedom, which will retain th
guantum mechanical nature. For example, for a system consisting of many atoms, one n
designate (some of) the electrons as the fast degrees of freedom and the nuclei as the
degrees of freedom. Note that the existence of separation in time scales is crucial w
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the classical limit is ultimately taken for the slow degrees of freedom. One has to be
careful in dividing a system into classical and quantum mechanical parts see, e.g., Ref.
especially when time scales are comparable.

Note that the notation introduced here—subscripasidg—anticipates which degrees
of freedom are going to be treated classically dnd which quantum mechanicallg)(
This notation may be dropped in the remainder of this paper when confusion is unlike|

Rigorously speaking the quantum nature of all degrees of freedom has to be accounte
irrespective of the designation “slow” or “fast.” The time-dependent &tihger equation
for the entire system has to be solved. The total wave funaignR, t) is the solution of

iﬁia‘p(ra’tR’t) —HY(, R 1), 1)

where H is the Hamiltoniany are the coordinates of the fast degrees of freedom, a
R are those of the slow ones. Note that fast coordinates—which are going to be tre
quantum mechanically—are labeled with lower case letters while slow coordinates—w
are ultimately going to be treated classically—are denoted by capital letters. The Rect
thus is a 3-dimensional vector containing the coordinaksof all N slow degrees of
freedom in the system; similarlyis a 3r-dimensional vector.

The HamiltonianH of the system oN slow degrees of freedom with malsksandn fast
degrees of freedom of massis

H = K¢+ Hq.

HereK_ is the kinetic energy operator

N
_ 2
Ke==D oy, Vi
=1

and the Hamiltonian for the fast subsysteétypis of the form

n
Hq(r,R, 1) = —gzﬁ;vﬁ + Voq(r. 1) + Vee(R, 1) + Vge(r, R, 1)
when pairwise additive interactions are assumed. The terrhk, iare the kinetic energy
operatorKqy = —Zi”:l(ﬁz/Zm)Vrzi; the potential energy operators for the fast subsyste
and the slow subsystem; and the interaction between the two. We group the last three
asV (R, r,t) =Vyq+ Vge+ Vec = Vg + Vec.

The Ehrenfest method can be derived as a classical limit of time-dependent self-cons
field method (TDSCF) (see, e.g., [7, 73]). This is a mean field method; i.e., the total w:
function ¥ of the system is factorized into a single product of that for the slow and f;
particles [74],

YR, T, t) =y, xR, t)e(”“ft“"”'“”r*-f d"), 2

whereys andy are supposed to be normalized. The phase factor introduced in this equati
added for simplification of the final equations and the subscrigtitadicates which degrees
of freedom are integrated over. If one substitutes this equation into the time-depen
Schiadinger equation (1) and multiplies from the left wiglf and integrates oveR one

obtains an equation for the wavefunctign of the fast degrees of freedom. Similarly,
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multiplying by v* and integrating over the fast degrees of freedom yields an equation
x. These equations are the standard TDSCF equations,

0

|ﬁ%=uq+uwumw 3
and

0

IE%szHWWWMK @)

The fast degrees of freedom move on an effective potential energy surface that is an ave
field of the slow degrees of freedom, and vice versa. Feedback between the fast and
subsystems is incorporated in an average manner. These two equations have to be s
self-consistently.

In order to obtain the classical limit for the slow degrees of freedom one can follow in t
footsteps of Messiah [7] and separate the wavefungtidor the slow degrees of freedom
in amplitude and phase factors.

x (R, 1) = AR, )e/MSRY, (5)

When one substitutes this into (4) and separates real and imaginary4parnd$are taken
to be real-valued here) one obtains the two equations

39S (Vr, S)° o« R VEA

ﬁ—i_z,: 2M, +(W|Hq|¢)r—§I:MT (6)
and

A 1

EJrz,:NT(VR' (Ve S +Z——VR|S 0. 7)

The latter equation expresses continuity of flux [7]. The classical limit is obtained by setti
h'to zero. Note thét does not appear in the latter equatioappears on both sides of (6) but
on the left-hand side it appears(iti| Hq| ), which is integrated over the quantum degrees
of freedom. Hence the classical limit is obtained by setting zero on the right-hand side
of (6), which gives

+ (¢ Hgl¥)e = 0. 8

This equation, together with (7), describes a swarm of independent classical trajectc
moving on the average potential energy surface of the fast particles. The s@ofigng. (8),
which is the Hamilton—Jacobi equation [75], is the classical a(fﬁanft(Kc — Vo) dt'. It
can be shown that the Hamilton—Jacobi equation is equivalent to the Newtonian equa
of motion [7]

F=—Vr(WIHqgl¥)r. )
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whereF is the forcem(d?R/dt?). The separation into a classical and quantum mechani
subsystem is made complete by setting the coordindtes the classical system to a
3-function in (3) [76]

0

|ﬁa—1‘t” = (Kq + V)¢ = Hqy. (20)
These last two equations define the mixed quantum/classical dynamics within a mean
approximation.

2.2. The Quantum Force: Hellmann—Feynman Theorem

The expression for forces on classical particles (Eq. (9)) is commonly rewritten in a nr
suitable form that does not require the calculation of gradients of wavefunctions. Wher
quantum wavefunctio is an exact solution of (3) the expression in Eq. (9) for forces c
classical particles can be simplified to [77]

Fi(R®) = —((Vr¥IHglv), + (¥|Vr Halv) + (¥IHal VR ¥),) (D)

= —(¥|Vr, Ha|¥), = FfF R(t). (12)

Equation (12) is known as the Hellmann—Feynman theorem. Itis easy and useful to shov
it is true for for the case wheng is an exact solution of the time-independent Sdimger
equation

Hq(r, R, DY (r, R(1)) = E(R®)¥(r, R(1)), 13)

whereE is the total energyy|Hqlv ). Then

(VR WIHql¥), + (¥IHql VR, ¥), = EVR (¥ | ¥)r =0 (14)

when the quantum coordinates are integrated over all space. Note that “exact” in this co
means that/ is an exact solution obtained by using a maybe-not-so-exact Hamiltoni
Sometimes it is not possible to obtain exact solutions to thed8aigér equation, in which
case the Hellmann—Feynman theorem is no longer valid.

2.3. Adiabatic Approximation

We have used to denote a general quantum wave function. Assume that at tia
the system starts out in a “pure” quantum state, i/eequals a solutiop of the time-
independent Scbdinger equation at that time

Hok = exgx.

The solutions of this eigenvalue equation are the energy eigenvajuesy(R(t)) =
(¢kIHgléx)r and the adiabatic eigenstatgs= ¢k (r; R(t)) for a given configuratiorR
at timet. So the adiabatic energy surfaces are obtained by solving the time-indepen
Schiodinger equation and are parameterized by the classical configuratidra later time
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FIG. 1. An example of potential energy surfaces and accompanying wavefunctions for the middle quant
proton in HO; in the gas phase. (The quantum proton is depicted at its ground-state expectation value
position.) Top: (a) non-equilibrium and (b) equilibrium configurations (oxygen, black circles; hydrogen, op
circles). Bottom: potential surface and wavefunctions for configurations shown. The wavefunctions are lab:
according to energy starting with one for the ground state. Note that in the top and bottom figures distance
not scaled the same.

t’ the system will generally have developed into an admixture of states

YR = gk RE)). (15)
k

We will call this admixture a mixed state. In the adiabatic limit, however, the quantu
subsystem is assumed to immediately adapt its state to that of the classical subsyste
that it remains in the initial quantum state (usually the ground state) at all times, i.e.,
wavefunction does not become a mixed state éné ¢ with k fixed. Many simulations
have been done within the adiabatic, or Born—Oppenheimer, approximation, where
guantum system is assumed to remain in the ground state [8]. This approximation is v
for systems in which the dynamics is dominated by that of the ground state. In many syst
the adiabatic approximation breaks down, however, and excitations from the initial st
become important in the time evolution of the system. This is called nonadiabatic dynam
Departure from adiabaticity becomes likely in regions where the quantum levels are clos
energy and in regions of strong coupling between the quantum states. Then proper inclu
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FIG. 1—Continued

of nonadiabatic effects is important. Methods for simulation of nonadiabatic events (¢
[1, 78-82]) will be discussed extensively.

2.4. Modeling the Interaction between Quantum and Classical
Degrees of Freedom: Pseudopotentials

Simulation of a mixed quantum/classical system within a wavefunction approach reqt
determination of the eigenstates of the quantum subsystem for a given configuration ¢
classical system. The interaction between the classical and the quantum subsystem ha
calculated for this purpose. An approximation of both teligsandVyq (see Section 2.1),
i.e., the pseudopotential, needs to be found. For a general theory on the calculatic
pseudopotentials, see, for instance, Austial. [83].

A pseudopotential has to meet a set of requirements in order to be a sufficiently acc
approximation to the true potential operator for the system. First, the energy conservati
the total system should not be violated. Second, if dealing with an excess electron, the
function of the excess electron has to be orthogonal to the filled atomic orbitals of the sol
atoms/molecules (Pauli principle). When dealing with an excess quantum proton, usuall
overlap of the proton wavefunction with that of the protons in the nucleus can be negle
safely. Third, polarization effects of the atom due to the presence of an excess ct
have to be included. Finally, a pseudopotential should reproduce experimentally detern
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properties such as scattering cross sections, absorption spectra, etc. In order to meet th
requirement interactions such as exchange effects, Coulombic interactions, and correl:
between the motion of the excess electron and the core electrons need to be included
possible to construct a pseudopotential that incorporates the requirements exactly, bu
resulting pseudopotential is non-local; i.e., the interactions are not pairwise additive :
many-body effects have to be taken into account self-consistently. The construction
local pseudopotential is based on the assumption that the interaction of an excess qua
particle with the classical particles is additive, i.e., that it can be written as a sum of sepa
interactions with one atom.

An example of potential surfaces for a quantum particle and its wavefunctions is giv
in Fig. 1. In this gas-phases®; system the middle proton is treated as a one-dimension
guantum particle moving along the oxygen-oxygen axis. Two configurations are shown v
accompanying one-dimensional potential surfaces and adiabatic vibrational wavefunct
as a function of the one-dimensional quantum coordinateng the oxygen—oxygen axis.
The potential for the quantum proton depends on the coordinates of all particles in
system. In this figure one sees that the donor—acceptor distance greatly influences the
of the potential surface. For a larger donor—acceptor distance the potential is a double \
while for a shorter distance it is a single well. The shape of the potential energy surfac
turn determines the shape, localization, and energies of the adiabatic eigenstates.

2.5. Nonadiabatic Dynamics and Branching Processes

In mixed quantum/classical systems the calculation of the forces is not a trivial iss
Adiabatic simulation methods, in which the quantum subsystem is constrained to occ
the singleith adiabatic eigenstate at all timeg £ ¢;) are correct when the adiabatic
approximation is valid. The expression for the quantum force in this case is given
—(¢i| VR Hql¢i)r (@assuming the Hellmann—Feynman theorem is valid) (Section 2.2). Wh
the adiabatic approximation breaks down, however, excited states play a role in the dyn
ics, and propagation in time of an initially pure quantum wave function generally evolv
the wavefunction to a mixed state. The simplest way to include excited states is to let
system evolve naturally into a mixed state and use a mixed@tat® _; ¢;¢; in the energy
and force calculation. If one treats the entire system quantum mechanically this is n
problem. The dynamics of the total quantum mechanical system is correctly describec
mixed states. When the classical limit is taken in the mean field approach (Section 2
however, the different treatment of classical and quantum degrees of freedom does
always result in a correct description of the overall dynamics. The expansion of the t
wavefunction¥ into a single product (configuration) neglects the correlation between tl
different types of degrees of freedom. We illustrate this with an example.

Consider, e.g., a system that consists of a polar solvent in which a large solute com|
that has an ionic and a covalent state is immersed, as illustrated in Fig. 2. The ionic
covalent states of this system are of different character and the orientation of the sol
molecules around the solute is entirely different dependent on the state of the solute.
charge separation within the solute complex in the ionic state orders the dipole momen
the solvent molecules around the solute, while for the covalent state the solvent molec
are oriented in a more random fashion. Assume that for this solvent—solute system the
degree of freedom that needs to be treated quantum mechanically is the charge transfe
between covalent and ionic state (a hydride in this example). Using a mean field met
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FIG. 2. A complex immersed in a polar solvent; the solvent molecules consist of a positively charged
(white) and a negatively charged part (black). When the complex is in a covalent state (a) the solvent molecul
oriented rather randomly about the complex; in the ionic state (b), however, there is a distinct favorable orient
around the solute for the solvent molecules. The charge distribution in the solute complex is pictured on pa
the complex for clarity. Only the solvent molecules closest to the complex are shown.

the forces on the classical solvent are averaged over both ionic and covalent state \
functions at all time$ > 0. This means that the forces are a weighted average of the for
corresponding to the ionic state and the forces corresponding to the covalent state (v
the squares of the amplitudegsare the weights). This is a reasonably good description
the situation when the dynamics of the system is dominated by one state, provided tha
is interested in properties of that dominant state. Little information, however, concerr
properties of the other non-dominant state can be obtained using a mean field method.
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when both states of the system are important in the dynamics, an average treatment
not reproduce the actual dynamics correctly.

When the classical dynamics depends strongly on the quantum path and multiple dis
paths from an initial to a final state are possible in the dynamics we speak of a branct
process. A mean field method is not expected to work very well for describing branchi
processes and one has to use a different approach. This approach is based on nonadi
events, where departure form adiabaticity is modeled by state switches of the quan
subsystem between different quantum states. This is called surface hopping. As in the
methods the quantum and classical parts of the system have to be treated self-consist
The trajectories of the classical particles determine the probabilities for quantum transiti
and the quantum transitions, in turn, influence the classical trajectories. We focus on tt
nonadiabatic methods in the remainder of this paper.

2.6. Separation of Degrees of Freedom: A Multi-configurational Approach

The separation of the degrees of freedom in a fast and slow subsystem in the sur
hopping approach is achieved by a route analogous to the Ehrenfest approach disct
in Section 2.1 (for notation one is referred to that section) [74, 76, 84]. Instead of ¢
proximating the total wavefunctiow as a single product as in the Ehrenfest approach,
multi-configurational expansion is used that includes the correlation between the differ
degrees of freedom

VIR =Y xR, D(r; R). (16)
k

The fast particle basis functiog are assumed to be orthonormal and to be specified |
advance (hence the switch in notation frgnto ¢), i.e., that an adiabatic or diabatic basis is
used. Adiabatic surfaces are instantaneous solutions of the time-independemti®gdr”
equation. In principle they are linear combinations of diabatic surfaces. (For a review
the use of a diabatic versus adiabatic basis see, e.g., Refs. [85, 86].) The slow particle w
function need not be normalized. Substitution of this expression into the time-depenc
Schigdinger equation and some manipulations yield a coupled set of equations for
slow degrees of freedom and for the fast degrees of freedom, analogous to the expres
obtained in the Ehrenfest approach. The slow degrees of freedom obey

Ixk(R, 1)
ot

i = Kexk(R, 1) + Z(Ekk’ — D) xw (R, 1), (17)

k'k

whereEy = (¢ Hql¢w)r and andDyy is the nonadiabatic operator

N/ R2 h2
D (R, 1) = —Z (2M|<¢k’V|%| b)), + W<¢k|VR| b ), VR, > (18)
=1

Surface hopping is a classical analog of this expression, not an exact classical limit.
explained nicely in a recent publication by Tully [76] the wavefunctigpsf the slow
degrees of freedom can be separated again in amplifyded phaseS, factors. After we
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obtain the classical limit by settirtgto zero, the equation

2

0 (Vr &) _
W‘FZW‘FWHHM‘W% =0 (19)
and the flux continuity equation
9 A 1
-t i (VA - (Ve S + Z VRI

s f[s

k'£k

R
d — ik (R) + = Ekk]e (I/ﬁ)f(EkkEkk)dt> (20)

emerge. Heréyy is the nonadiabatic coupling vector

dik (R) = (x| VRoy)r.

For the fast degrees of freedom the equation of motion is again given by (10). Equat
(19) and (20) describe motion of trajectories on each effective potential energy surfac

Exk = (¢ Hgldw)r, (21)

where the flux between the surfaces is governed by the terms containing the off-diac
elementsEy or the nonadiabatic coupling vectiyi in (20). A practical exact solution to
these equations has not been obtained. The fact that trajectories are coupled in a nor
manner hampers a direct solution of these equations. In surface hopping each traje
evolves independently of the others. This obviously is an approximation. In the next sec
it will be shown that the expression for the flux between surfaces in surface hoppin
essentially equal to the right-hand side of (20) when one identifiewith the quantum
amplitude on each surfage

2.7. Molecular Dynamics with Quantum Transitions: History and Algorithm

The development of methods to deal with nonadiabatic effects in molecular dynamics
a long history (see, e.g., [87]), in which a variety of classical, semiclassical, and quan
mechanical approaches play a role. The most widely applied method is surface hop
with its many variants in which a state transition of the quantum particle is describec
a “jump” between the potential energy surfaces corresponding to the quantum state
1990 Tully proposed a new surface hopping approach, molecular dynamics with electr
transitions (MDET) [1]. This method was originally developed for electronic transitions |
more recently has been applied to single proton transfer reactions [88] and been rec
tened molecular dynamics with quantum transitions (MDQT). The surface hopping met
MDQT allows quantum transitions at any time instead of at localized avoided crossi
only, as in the older methods [89]. Moreover, it allows transitions between any num
of coupled states maintaining quantum coherence between different “state switche:
swarm of classical trajectories is considered over the effective energy surfaces (20).
system is allowed to make stochastic “hops” between the instantaneous quantum
depending on the time evolution of the occupation probabilities of the states. At a gi
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timet each trajectory is at a single potential energy surface, never on an average surf
and the wavefunction that determines the forces on the classical particles is never a r
state. This is a simple solution to the problems that arise when a mixed-state wavefunc
is used. For the sake of simplicity, the switches between quantum states are assumed
sudden and to occur in infinitesimal time. It has to be pointed out, however, that in spite
sudden state switches of a single trajectory, the ensemble of trajectories evolves smo
because the trajectories switch at different times. At each integration time step a decisic
whether to switch states according to a “fewest switches” algorithm governed by the qu
tum mechanical probabilities is made. The switching procedure in MDQT ensures that,
a large ensemble of trajectories and ignoring difficulties with classically forbidden stat
the fraction of trajectories assigned to any state at any time is equal to the average qual
probability at that time.

Here we discuss MDQT in more detail (the equations can be found in many pap:s
including Ref. [1]) and give some practical points for simulation and other points of intere
Since surface hopping is best suited to the use of an adiabatic basis [76, 77] we repre
the formulation in terms of adiabatic eigenstates. The equations that are given are gen
however. The time-dependent quantum wavefunciign R, t) is expanded in a basis of
adiabatic eigenstates (r; R(t)) that have energy eigenvalugst) = Ejj (t) = (¢ |Hql¢; )r
and depend parametrically on the classical trajed®ity;

Y, R =) cj(hg;(r; R, (22)
j

wherec; (t) are the (complex-valued) expansion coefficients, the quantum amplitudes. S
stitution of this equation into the time-dependent ®cimger equation yields the equations
of motion (eom) for the expansion coefficients

dc : i
¢j EC]:—ch<djk'R+%(¢j|Hq|¢k>>a (23)

k

whered;y is the previously introduced nonadiabatic coupling vector

djk(R) = (¢ (r; R)|VRrIgk(r; R)).

Note that the subscript is dropped frofr; the brackets stand for integration over the
guantum degrees of freedom only. Comparison of this equation to (20) shows the ana
between the amplitud&; and the quantum amplituag (apart from the phase factor, which
is arbitrary). The diagonal terntk are zero for orthogonal wave functions. In the above
derivation of the eom, the chain rule

(o

was used. In simulations, however, the left-hand side of this equation is computed instez
the right-hand side whenever possible in order to avoid the expensive gradient calcula
In the adiabatic representation ttyg, | Hy|¢k)-term in Eq. (23) is equal tex(R)djk. In a
diabatic representation the nonadiabatic coupling vectgrsire zero [85, 86]. Note that

06
ot

>=%WWWR (24)
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the second derivative terms present in the nonadiabatic coupling in Eq. (18) are rigorc
absent here due to the fact that the coefficientsiepend on time only and not on the
classical coordinateR as did the expansion coefficients.

Although the total wave functioy is a mixed state, in surface hopping the forces o
the classical subsystem are determined by a single adiabatic eigenstate, the occupiec
The heart of the MDQT method is the methodology to decide which state is occupie
which time. The diagonal elements of the time-dependent density matrix with elem
aj (1) = ¢ (t)cj (1) give the occupation probabilities of the instantaneous adiabatic eig
states. Thus the number of trajectories—out of a swarmil dfajectories—on potential
energy surfacg at timet is a;; (t)N. The off-diagonal elements give the phase coherenc
The probability that a trajectory in stajeat timet switches out of this state during the
time stepst should be chosen in such a way that an ensemble of trajectories has the
rect statistical distribution of occupied states and transition probabilities at all times. Ti
proposed the hopping probability

_ _ bkj5t
gjk(t, 8t) = max(O, a (t)), (25)
where
aj -
byj =2 |m(ﬁ<¢k|Hq|¢j>> — 2Re@qdy; - R, (26)

subject to the constraint that the fewest possible switches occur. The coefflgieats
related to the probability flux bw;; = Zk#j bjk (from Eq. (23)). The total change in
occupation probability of a given stajecontains contributions;, from all other states
involved. When statg is occupied at a given time, a transition to another given #ate
may occur when the probability flow is fronto k, i.e, bjx < 0 (which impliesb,; > 0 and
hencegjx > 0). Whenb;, > 0 the hopping probability from stateto statek is set to zero.
The transition probabilities are compared to a uniform random nugb@d, 1] to decide
which state the system will jump to in the next time step. Assume that siateccupied
(and this state is neither the ground state nor the first excited state). Then the systen
hop to the ground state (labeled 1Yik g;1; a switch to the first excited state will occur
if 9j1 <¢ <0j1+ Qj2, etc. This procedure ensures that for an ensemble of trajectories
for infinitesimal §t, the rate of change of number of trajectories in a given staquals
a;j 8t, as required: The probability flux from one state to another is correct. For an enser
of trajectories, the fraction of trajectories at a given time in a certain state is equal to
average occupation probability of that state at that time for all times. This is only tr
however, in absence of problems due to classically forbidden states (we will return to
later in this section). Also, for complicated systems of practical interest averaging ove
ensemble of trajectories may be computationally very expensive, if not impossible [90-

The probability of hopping approaches zero as the time&tépreduced. Even though
each individual trajectory changes when one changes the time step (because they will s
at different times, resulting in completely different dynamics of the individual trajectorie
the results for an ensemble of trajectories are independent of the time step as long «
time step is chosen sufficiently small. The MDQT method is summarized in Fig. 3.

In general energy is not conserved when the system jumps from one potential en
surface to another. To correct this, a velocity adjustment should be made. The adjust
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FIG. 3. Overview of MDQT. (Note that the velocity reversal conforms with the original MDQT.)

is usually made in the direction of the nonadiabatic coupling vector, but other approac
are known [93]. The nonadiabatic coupling vector couples with the velocity of the classi
particles asR-d,-k so only the component of the velocity parallel to the nonadiabati
coupling vector is adjusted when a trajectory jumps to another state. This means th:
those instants the nonadiabatic coupling vector has to be calculated explicitly. The coup
vector can be calculated from the off-diagonal Hellmann—Feynman forces:

di(R) = LIVRPGldD @7)

€k — €j

(This expression can be derived from the fact tRat¢;|Hql¢x) =0 for exact eigen-
functions ¢.) Note thatdjkz—d’;j and the diagonal elementiky are zero for ortho-
gonal wave functions; also note that if one imposes bond constraints on atoms withi
molecule, the nonadiabatic coupling vector has to satisfy these constraint forces [88]. If tt
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is not enough energy available in the velocity component parallel to the coupling vector
intended hop should be rejected. According to the quantum subsystem it is time to sv
states, but the classical subsystem cannot provide enough energy for that: It is class
forbidden. These failed hops may occur occasionally simply because of an “unlucky” d
of arandom number, but for some systems and for low energies the fraction of rejected
may be substantial. This is a warning sign of possible breakdown of the mixed quantum/
sical description. The branching ratios of the trajectories then no longer equal the ave
of the squared quantum amplitudes. There are two views on how to handle rejected
(assuming that a mixed quantum/classical description is valid). The first view is that velo
in the direction of the nonadiabatic coupling vector should be reversed [88]. The phys
picture behind this reasoning is that the system tries to hop to an upper surface, cannot
it, and falls back. In the limit of infinitesimal time stép— 0 this is equivalent to the way it
is dealt with in methods that use the so-called Pechukas force in the time propagation
tion 2.9.1). The second view is to continue the trajectory as if nothing happened [80].
idea is that for some systems keeping the same velocities after a rejected state switch r
in an error in the occupation probabilities that is less severe than the violation of momer
conservation that would occur when the velocities were reversed. In MDQT momen
generally is not conserved when nonadiabatic transitions occur, but under normal condi
the violation is considered to be minor. In our experience the violation of momentum con
vation after velocity reversal is of the same order as the violation that occurs for a succe
hop.

The quantum amplitude coefficients can be rapidly oscillating in time, which can ea
be seen when one substitutes [84]

V(R = Z & (r. R)e+<i/ﬁ>f0 dt'e; (R(t)) (28)
j

into the time-dependent Sadinger equation to obtain

& ~ - i —(i ' "[e "))—e !
cj=—ch({djk~R+ﬁ<¢j|Hq|¢k>}e<'/“>fo“‘“<R“” “R“”l) (29)

k

(which shows the analogy to (20) including the phase factor). If the energy;gagy is
large, the phase factor is a rapidly oscillating function in time and the time averég&@‘.
Only when the energy gap is relatively small or the states are very strongly coupled
amplitude be redistributed among the differéyis. Leaking of occupation probability from
one state to another only takes place when their energy levels are close for a reasc
amount of time. To avoid problems in integrating the oscillatory coefficierdae can
integrate the expression for tidis or a similar expression [88] instead.

In MDQT an independent trajectory approximation is made to the non-locally interz
ing trajectories obtained by a multi-configurational treatment (Eqgs. (19) and (20)). Tt
is no interaction between different trajectories in MDQT; each trajectory is completely
dependent from the other trajectories in the ensemble. Within one trajectory, howevel
equations of mation for the expansion coefficients (Eq. (23) or alternatives such as (
are integrated coherently throughout; i.e., the phase factors are retained at all times.
means that within one trajectory there are interference effects of the quantum amplit
(the expansion coefficientg(t)) and when a trajectory passes through subsequent regit
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of strong coupling there will be interference in the excitation probabilitieaci&iberg
oscillations [94]).

2.8. Mean Field versus Surface Hopping: An lllustration

In order to summarize and clarify the ideas introduced here Fig. 4 shows possi
paths in a two-state model for a mean field method, a naive surface hopping algori

a)

t

FIG. 4. Upper and lower adiabatic energy curves as a function of time (solid lines) and the potential ene
of a possible trajectory (dashed line) for (a) mean field method, (b) naive surface hopping, and (c) MDQT. "
arrows indicate the direction of the path.



MIXED QUANTUM/CLASSICAL SIMULATIONS 243

c)

t

FIG. 4—Continued

(where the switching probability depends on instantaneous occupation probability or
and MDQT. The difference between the first method and the latter two lies in the eva
tion of the forces on the classical particles, while the difference between the latter two
exclusively in the hopping criterion. In Fig. 4 two adiabatic energy curves are given &
function of time, i.e., the potential energy surfaces for (classical) nuclear motion if eit
of these states is occupied. In these graphs the energy of a trajectory—or, in other w
the potential energy surface on which the nuclei move—is depicted as a dashed line.
that due to time propagation under different forces in each method, the adiabatic er
curves diverge on a longer time scale than depicted here. In Fig. 4a, a trajectory obtz
by the mean field method is shown. With the mean field method, the trajectory moves
single adiabatic surface until the region of strong coupling is reached (where the surf
are close in energy). After the trajectory leaves this region, the nuclear motion evo
on a potential energy surface that is a weighted average of both adiabats. This me
cannot correctly describe branching processes, as shown earlier. Figure 4b depicts
jectory obtained by a naive surface hopping method. This method behaves similarl
the mean field method: Until the region of strong coupling is reached the system is ¢
single adiabatic surface, but after leaving the region of strong coupling the system ki
switching states incessantly. This effectively results in movement of the classical nucle
the same average potential energy surface as obtained by a mean field treatment, wi
undesirable in many applications. The numerous state switches occur because this m
does not incorporate a fewest switches criterion. If at a given time the flux in occupa
probability from a staté to another statg is positive then more trajectories switch from
fromi to j than fromj toi. This results in the correct overall flux of trajectories fron
statei to statej, but the flux flow is not obtained in the most “straightforward” man
ner. With a fewest switches criterion only switches frorto j occur. The importance

of the fewest switches criterion is underlined by the trajectory obtained with MDQT,
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shown in Fig. 4c. The trajectory moves on a single adiabatic potential energy surfac
all times, and only in the region of strong coupling do a few hops occur between the <
faces. In the region of strong coupling motion on an effective surface is correct; MDC
relies on the fact that the time spent in these strong coupling regions is short. Clee
the fewest switches criterion in MDQT is essential for a proper description of branchi
processes.

As pointed out previously, however, there are situations for which a mean field treatm
is the method of choice. In situations were the mean field method works, it has the advan
that it has a well-defined classical limit, is independent of representation (i.e., whethe
diabatic or adiabatic basis is used [85, 86]), conserves total energy naturally, and inclt
feedback between the classical and quantum subsystem, which is not the case in somer
guantum/classical methods. In some cases a mean field approach is shown to outpel
surface hopping [95] and in some instances surface hopping is shown to perform ra
poorly [96]. Especially for cases where the regions of strong nonadiabatic coupling
extended, surface hopping has some problems. It is the mixed quantum/classical meth
choice, however, for the applications we consider in this paper.

2.9. Alternatives to Molecular Dynamics with Quantum Transitions

2.9.1. The Pechukas forceln search of an appropriate way to mix quantum and classic:
mechanics, Pechukas [97, 98] developed a semiclassical theory for time propagation
mixed quantum/classical system. The separation of degrees of freedom is based on the
principles as discussed in Sections 2.1 and 2.6. Pechukas’ work is based on a generaliz
of Hamilton’s formalism and Feynman’s path-integral formulation of quantum mechani
[10]. He formulated a semiclassical theory of potential scattering and derived “classic
equations for the relative motion of two colliding atoms when they undergo an interr
guantum transition. The expression for the force in this formalism has been used in mi
guantum/classical simulations of various systems.

The HamiltonianH is split into a nuclear kinetic energy pak., and everything else,
Hq(r, R). As usual,R are the coordinates of the nuclei (that will ultimately be treate
classically), and specifies the internal states of the atoms, for example, electronic, |
tational, or vibrational states. Propagation of the system fioR't’} to {r”R"t”} under
this Hamiltonian is described by the full propagako(r”R”t” | r’'R’t’). For calculation of
the mixed quantum—nuclear dynamics computation of the full propagator is not necess
however. Instead, it is sufficient to calculate a reduced propaffatowhereK g, gives the
probability of an internal transitiom — 8 while the atoms move from the space-time point
{R't’'} to {R"t”}. This reduced propagator can be evaluated in the Feynman path-intec
notation and the full time propagation is divided ifdime slices ok = (t” — t')/P. The
path-integral expression can be approximated by a short-time expression for sufficie
small time slices, i.e., larg® (ideally P — 00). This allows factorization of the propa-
gator into a potential and a kinetic energy part as a reasonable approximation to the
propagator. This considerably simplifies the expression to be evaluated.

In the classical limith— 0, only the immediate neighbors of stationary phase point
contribute to the path integral. In the semiclassical approximation it is assumed that
magnitude of the transition amplitude of statéo state8 changes much more slowly with
variations in the path than its phase. Stationary phase paths contribute most significe
to the reduced propagatsit,. The reduced propagatéts, combined with the stationary
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phase requirement leads to the classical equation of motion

Mﬁa)z_Re{waiﬂdenRa»mRang¢tm

=F°Rt), (30
(B, 1) [a(t, 1) } (R),  (30)

whereR(t) is a stationary phase path. The above equation is the well-known Newtor
equation of motiorMa = F in disguise, where the force is the Pechukas f&GeThis ex-
pression is much more complicated than that for the Hellmann—Feynman force (Eq. (
The wavefunctiona(t, t') andg((t, t”) are dynamical wavefunctions. Relating to our previ
ous notationg (t, t') = v, (1), wherey, (1) is obtained by propagating adiabatic state ¢,
in time fromt’ to t. The dynamical wavefunctions are a solution of the time-depend:
Schidinger equation and are generally a mixed state obtained by time propagatior
der the time-dependent Sdlinger equation with time-dependent Hamiltonky(t). The
denominator of the expression for the Pechukas f¢gg¢e t”) | a(t, t')) is the transition am-
plitudeTg, from statex to states. Ty, is time reversible and is best understood as the overl
of the dynamical mixed state wavefunctiert”, t') = v, (t”) with the adiabatic eigenstate
B at timet” (or equivalently of the back-propagated stat¥, t”) with statex at timet’).
The Pechukas force describes a semiclassical path for the classical subsystem
the quantal subsystem evolves from siat® states. An important point to note is that
the Pechukas force is not predictive. The force along a trajectory depends on the e
trajectory itself. Hence, the forces and the trajectories need to be solved self-consist
The computational effort to achieve self-consistency depends on the physical proble
hand and cannot be accomplished for large-scale simulations. This is one of the proble!
the method and is associated with the bifurcation of classical paths (Section 2.5). In pra
this limits the self-consistent propagation to short times. Also note that the expressiol
the Pechukas force intrinsically includes a finite time interval. Pechukas showed tha
energy and angular momentum are rigorously conserved along a trajectory. The differe
in energy associated with a quantum transition are balanced by a change in energy «
classical subsystem. The same holds for the angular momentum.

2.9.2. Nonadiabatic methods based on non-Hellmann—-Feynman folé&hster,
Rossky, and Friesner developed a nonadiabatic simulation method (the WRF metho
short) [78] that combines the Pechukas approach with a surface hopping method.
Pechukas force determines the best classical trajectory accompanying the quantum «
tion from a given initial state to a given final state. The self-consistent propagation associ
with the use of the Pechukas force is limited to short times for mixed quantum/class
simulations (see Section 2.5) and to overcome the problems associated with long-
mixed state propagation the quantum subsystem is projected onto an adiabatic eigens
intervals. An initial state of the systet, (tj) = « is selected a from the set of adiabatic
eigenstatefy; (1)} and the time-dependent Scklifiger equation is solved. The state of the
systemy, (t) at a later time; will have developed an admixture of adiabatic states ar
the overlap of this wavefunction with the adiabatic eigenstatd §; (t)} at this time gives
the transition amplituddg, = (8 | ¥ (t)). An analog to the stochastic surface hoppin
method MDQT [1] is used to determine into which instantaneous eigenstate the sy
should be projected at a given time. The squares of the transition ampliydésstead of
theg,s asin MDQT, define the probability of transition to each adiabatic state. The decis
of which adiabatic eigenstate will be occupied at a given classical time step is made ol
firstiteration through the self-consistent calculation of the path and the force along the |
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Theoretically, energy is rigorously conserved in this method, without any need for veloc
rescaling. In practice, energy conservation may be hard to obtain.

A comparison has been made between the WRF method and MDQT by the authors o
former method [99]. This comparison was made for two-state systems that do not explic
incorporate bath dynamics but include an arbitrary dephasing time scale. The results dc
seem to strongly favor use of the one method over the other. No conclusion about whic
the “better” method can be drawn. Note that the WRF method and MDQT give the sa
results in two limits: In the limit of infinitesimal time step the effect of the Pechukas forc
is equivalent to the velocity rescaling used in MDQT when a state transition occurs. In-
adiabatic limit the Pechukas force reduces to the Hellmann—Feynman expression.

A hybrid method has been developed that combines the use of the Pechukas force
Tully’s surface hopping method [80]. The transition probabilitigs (rather tharT,s as in
WRF) are obtained by back-propagation of the wave functions. Analogous to the origi
WRF method, this method selects an instantaneous adiabatic eigenstate after each cla
time step that determines the quantum forces. For details the reader is referred to the a
of Cokeret al. [80] or to the review article by the same author [84], where all the aboy
issues are discussed.

Recently another mixed quantum/classical formalism for nonadiabatic QMD was p
sented by Murphrey and Rossky [100]. Their method was developed for quantal subsyst
represented by approximate wavefunctions. Itis based on a stationary-phase approxim
of the classical bath and a variational principle for the quantum transition amplitudes.
approximate trial wavefunctions differ only by a first order variation from the exact solutio
of the time-dependent Sadihger equation and are assumed to give the stationary val
for the transition amplitudes [101]. A variational expression for the transition amplitud
is derived that is stationary with respect to small changes in the trial wavefunctions. Tl
first order errors in the trial wavefunctions result in second order errors in the transiti
amplitudes. The expression for the quantum force is slightly more complicated than in
WRF approach. It contains the gradient not only of the Hamiltoigbut also of the trial
wavefunctionsrandB. (The appearnace of gradients of the wavefunctions in this expre
sion is expected because we are dealing with approximate wavefunctions (see Section
The expression for the “generalized stationary phase” quantum force is

Fe(R(1)) = —Re{ Vr(B(t, tf)|H(1r(ﬁrv R®)la(t, ti)) } (31)

whereTg, is given by the same expression as in WRF. The force and trajectory calculatic
have to be done self-consistently in the same manner as in WRF, and the energy is cons
independent of the energy difference between initial and final states. This method sulf
from the same problems regarding long-time evolution as the WRF approach, and sur
hopping is used to limit mixed state propagation to short times.

Although so far this algorithm has only been applied to a simple test problem, the res
seem promising. The authors find that the results converge faster with increasing basi
size (for the expansion of the eigenstates) than when the Hellmann—Feynman force is
Moreover, they find that for a limited basis set their results are much closer to the exact o
Compared to simulations based on the Pechukas force they find that this algorithm is n
robust with respect to the time step and only slightly more expensive computationally spe
ing. The appearance of the gradients of the approximate wavefunctions in the expres



MIXED QUANTUM/CLASSICAL SIMULATIONS 247

for the force, however, could make this algorithm less tractable for other systems than t
considered by these authors. The effort to calculate the gradients depends greatly c
choice of the basis functions for the trial wavefunctions and may be substantial or ¢
close to prohibitive (see Section 4).

The major disadvantage of methods based on the Pechukas force is the required ite
procedure for the quantum force calculation. In search of the ideal nhonadiabatic algor
yet another method was proposed [102]. This method combines stochastic surface ho
(MDQT) with the mean field force. It is based on the notion that the limitation of
system to pure (adiabatic) states (as is done in MDQT) of the system may not be corre
extended regions of nonadiabatic coupling. The method uses a combination of mean
propagation between hops and projection onto a single adiabatic state when the meat
approximation becomes invalid. The fewest switches hopping criterion ensures the co
branching of classical trajectories, while the mean field force,

FMF(R(1)) = —(a(t, ;)| VR Hq(r, R()la(t, )

(Eg. (12)), provides the “best” classical trajectory accompanying the quantum evolu
(just like the Pechukas force). This method has been applied to model systems (the
models that were used to test MDQT originally) and results show that in this case
method works better than other methods based on an adiabatic force without increa
computational effort. An advantage is that the classical trajectories are robust with res
to the quantum representation (adiabatic vs diabatic representation), a virtue it inhe
from a mean field description. This method appears to have combined two virtues: a si
and intuitive force calculation, and a correct description of branching processes.

2.10. Quantum Decoherence

Quantum decoherence is an important issue in mixed quantum/classical simulat
The total wavefunction for system plus bath (Egs. (2), (16)) has a phase to which |
fast and slow degrees of freedom contribute. Upon taking the classical limit for the s
degrees of freedom, the phase information for this part of the system is lost. This pl
information is important, however, since it influences the branching ratios of the trajectol
For times shorter than the decoherence time there is interference between the wavefun
of the slow degrees of freedom for the different possible trajectories. For longer times
different possible trajectories diverge and there no longer is interference between t
different trajectories. This is known as quantum decoherence. In mixed quantum/clas
simulations, however, these interference effects are included in an approximate way or |
all. For a more rigorous investigation of quantum decoherence effects, methods which
on a semiclassical treatment [34, 35] rather than a classical one are obviously better s

In MDQT one averages over an ensemble of trajectories, which naturally washes ou
coherence within the quantum subsystem, but this does not account for the decohe
effects of the classically treated subsystem. This arises because when one average
an ensemble of trajectories, one is averaging over probabilities, neglecting interfer
between the quantum amplitudes of different trajectories. This is the independent traje
approximation mentioned earlier in Section 2.7. Since MDQT is a mixed quantum/class
method, this is rigorous, but obviously neglects possibly important effects such as nuc
tunneling.
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The WRF method explicitly includes a time interval. It is typical (although not necessat
to drop the phase factors of the quantum amplitudes at the end of each time interval.
way an explicit decoherence time is included. (Note that in WRF averaging over init
conditions is necessary as in MDQT.) Typically the decoherence time is chosen equz
the classical time step. The choice of this time step is a rather subtle matter. Since
WRF method relies upon interpolation of the potential energy surface within one class
time step, the time step should be chosen small enough so that interpolation is a reasol
approximation. On the other hand, the time step should not be shorter than the time s
of the coherent dynamics of interest; see, e.g., [78, 103].

The interaction between the system and the bath dictates length and time scale:
quantum decoherence [79, 104]. It is possible to estimate this decoherence time scal
the classical degrees of freedom and use this as the time step in the WRF method in ¢
to approximate the effect of the quantum character of the classically treated degree
freedom. Recently Bittner and Rossky [79, 105] developed a method to incorporate
guantum coherence loss in simulations of mixed quantum/classical systems. This me
includes characteristic time and length scales that characterize the decay in coherenc
to the differences in bath dynamics for each possible quantum state. It has been teste
a nonadiabatic model charge transfer reaction and shows that a shorter decoherence
scale diminishes the nonadiabaticity, recovering adiabatic dynamics in the limit of ra|
decoherence.

In recent work [103, 106] (note that the latter paper corrects an error in the former)
same authors estimated the decoherence time scale on the fly for the hydrated ele
system. Their method is based on the frozen Gaussian approach by Heller [107] (to in
porate nuclear tunneling effects), and the work of Neria and Nitzan [108, 109]. The nucl
decoherence time is estimated from the overlap of wave packets evolved on the diffe
effective energy surfaces of the system. It is important to note that the decoherence tin
not constant during a single trajectory, let alone for different trajectories. Also, for each
of states a different decoherence time applies. With extra effort it is in principle possible
determine these decoherence times on the fly for each trajectory. The use of a single c
herence time in simulations is a further approximation. Based on the above simulations
authors determined an average decoherence time for an electron in water and heavy v
and used that as the decoherence time in WRF simulations. Using this methodology
were able to explain the anomalous isotope effect that is observed in water for the nc
diabatic transition rate. Based on the difference in mass betwg@raHd 3O only, one
would expect the transition rate to be twice as fast in water as in heavy water. The fact
the dynamics on average evolves coherently for twice as long®, Bowever, balances
this effect and almost no isotope effect is observed, as is seen experimentally [110, 11

In summary, the nonadiabatic mixed quantum/classical methods presented in these
tions mainly differ in the time propagation of the wavefunctions, the force calculation, a
the treatment of quantum decoherence. Obviously other mixed quantum/classical metl
than the ones discussed here have been developed as well; see, e.g., [112-117].

2.11. Application: The Hydrated Electron

The literature devoted to the hydrated electron is extensive. Despite all the studies
have been carried out, however, many features of the hydrated electron, including s
of the basic physics, are not yet entirely understood. It is common to invoke a clc
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analogy to simple solvated anions. One assumes that a cavity in the solvent is occupi
the excess electron, which is surrounded by favorably oriented water molecules. Struc
aspects of interest include the size and geometry of the cavity, and the solvation s
ture. Spectral properties are also of great interest and have been measured experime
[118-125].

The hydrated electron system is a good candidate for mixed quantum/classical treat
and the simulations of a solvated electron are numerous. Earlier work dealt with the prol
within the adiabatic approximation (see, e.g., [65, 66, 126—129]) and was in part abl

a)

b)

@

/

FIG. 5. Electron density in water for the lowest four adiabatic eigenstates: (a) ground-state density; (b)
first three excited states. Isosurfaces of 10% of the density are shown. The electron wavefunctions are repre
on a grid and the water molecules are omitted for clarity.
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FIG. 5—Continued

reproduce and explain experimental spectral properties. It was postulated that inclusio
excited states and nonadiabatic events is essential to reproduce the experimentally obs
absorption spectra. When nonadiabatic methods gained interest it was shown that fea
in the absorption spectrum are indeed due to nonadiabatic transitions (see, e.g., [67-7:
130, 131)).

Structural information about the hydrated electron is plentiful. It is known from bot
experiment and computer simulation that the eigenstates lowest in energy are self-tra
and occupy only a small volume fraction of the total volume while higher excited stat
are more extended. Typical electron densities for the instantaneous adiabatic eigens
lowest in energy of an equilibrated excess electron in water at room temperature are sh
in Fig. 5. From simulations one learns that the equilibrium ground state is a nearly spher
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s-like state while the first three excited states are nondegengiidte states located in the
same cavity as the ground state. We estimated the radius of the equilibrated ground
cavity to be 3.1 0.1A fromthe participation ratio [92]. The excluded volume effect is als
reflected in the ground-state radial distribution functiggs o andge--y. The coordination
numbers for oxygen and hydrogen atoms around the electronic center of mass indicat
the water molecules are bond oriented rather than dipole oriented around the elect
density.

Dynamical information is also obtained relatively straightforwardly in time-depends
simulation methods. Nonadiabatic simulation methods allow one to obtain dynamica
formation for processes in which multiple quantum states play a role. This dynam
information relates to experimentally observed spectra. For example, in order to simt
and study relaxation after photoexcitation one can inject the electron into the excited stz
a water configuration and investigate the relaxation process to the ground state. A po:s
evolution path of the adiabatic energies after injection of the electron in an excited sta
illustrated in Fig. 6. This kind of information is not directly obtainable from experiment
Also note the extremely short time scale of the dynamics. In the relaxation one sees
ferent types of interaction. Differences in coupling between states leads to a compet
between different relaxation channels. About half of the trajectories show a rapid cas
through the manifold of states down to the ground state, while in the other trajectories
first excited state remains occupied for a considerable time (comparable to or longer
shown in Fig. 6). The latter observation explains features in the experimental absory
spectrum that were not understood before.

2.0

A A

energy [eV]

-4.0 : : .
000 010 020 030 040 050

t [ps]

FIG.6. Example of relaxation dynamics after injection into an excited state. The adiabatic energies are sl
as a function of time and the occupied state is marked with a circle. This simulation was done with the ML
method.
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3. SURFACE HOPPING AND THE SIMULATION OF INFREQUENT EVENTS

3.1. Methods

In some reactions the energy barrier that has to be overcome to evolve from react
to products is so high that the reaction rate is extremely low. Dynamical simulation of tl
type of system requires a different approach from straightforward trajectory integration
trajectory that is started at the reactant side generally stays there for a very long time be
it reaches the energy barrier. The fluctuations in energy in the system are so small \
respect to the barrier height that a trajectory reaching the top of the barrier is an infreqt
event. For the study of infrequent events it is not feasible to start a trajectory in the reac
region and hope it will eventually go over the barrier and end up at the product region. Thi
computationally prohibitive even for the most patient. Some tricks have to be inventedto c
with this [132—-135]. Recently a new method has been developed for this purpose for mi
guantum/classical systems [136]; it is called “multiple potential energy surface—molect
dynamics of infrequent events” (MPES-MDIE). The objective in creating this method w
to develop a method to simulate infrequent events that gives the same results as “ordin
MDQT at a considerably lower computational cost. The basis of this method is transit
state theory (TST), originally developed by Wigner, combined with MDQT; not only rat
constants but also real-time dynamical properties of reaction mechanisms can be obta

It has long been known from classical simulations that simulation of infrequent evel
is feasible only when trajectories are started at or near the dividing susféeee, e.g.,
Ref. [137]). The dividing surface is defined to separate reactants from products anc
transition-state theory the equilibrium flux through this dividing surface determinesther
constant. Typically the dividing surface is chosen to be located at or near the top of the en
barrier for the ground state. In the following it is assumed that this dividing surface is t
same for all quantum states. Instead of considering a “straightforward” trajectory evolv
from reactants to products, we split the trajectory into two parts. The trajectory is star
at the dividing surface. The first part of the trajectory is obtained by integrating backws
in time from the dividing surface to the reactant region. The second part is obtained
forward integration in time to the product region. The forward and backward parts of t
trajectory combine into the complete trajectory.

In the original formulation of TST, recrossings of the dividing surface are not allowe
so the dividing surface is crossed once and only once in a reactive event. TST cat
straightforwardly reformulated to allow recrossings of the dividing surface, however, a
the dynamical factoF accounts for recrossings. The dynamical fadtds obtained from
the number of times the dividing surface is crossed in a complete trajectory. The r
constant then is a product of the equilibrium flux through the dividing surface and t
dynamical factor. Originally TST only dealt with a single potential energy surface b
multiple potential energy surfaces can be included straightforwardly, as was done for
development of MPES-MDIE.

Starting a trajectory “somewhere in the middle,” however, is not trivial when stochas
surface hopping is used because this method has a memory: The nature of the qua
wavefunction cannot be determined without knowing the history of the trajectory. T
quantum amplitude of each adiabatic state (22), which state is occupied, and the trans
probabilitiesgjk (26) (or Tg, when using a WRF-like surface hopping method) at a give
time all depend on the history of the trajectory. Naively starting with a pure state at 1
barrier, i.e., @-function for the expansion coefficients (and hence occupation probabilitie:



MIXED QUANTUM/CLASSICAL SIMULATIONS 253

is not correct and, moreover, results in a dependence of the rate constant on the cho
the dividing surfaceS. These problems are overcome in MPES-MDIE by the use of
modified hopping probabilityf; in the backward part of the trajectory. This local hoppin
probability depends neither on history nor on the quantum amplitudes. Be€audees
not have a memory the quantum probabilities can be choses-aswation for the starting
configuration near the barrier.

It is obvious that trajectories obtained with a modified hopping probability are differe
from those that would have been obtained with MDQT but the correct results can be
covered. Assume we are interested in one particular trajectory. The initialnstatehe
backward trajectory is chosen from a Boltzmann distribution (rememberthat TSTisan e
librium theory) and the expansion coefficients are set to the correspafélimgtion. (Note
that surface hopping itself does not strictly obey microscopic time reversibility because
decision of whether a state switch is allowed is based on different classical velocitie
a forward and time-reversed trajectory. Therefore one expects that the distribution or
of the barrier is not strictly Gaussian, but the deviations are very small.) The trajector
integrated backward in time using the local hopping criterion and the “backward” qu
tum amplitudes until the reactant region is reached. Its steps are retraced exactly forw:
time, except that the trajectory is started with the “correct” pure state &t In the retraced
trajectory the “original” switching probabilitiegjx are calculated at each time step but n
actions are taken based on them. The trajectory—the sequence of hops—is assumet
reversible in time. The transitions in the retraced forward trajectory have to occur at
same times as in the backward trajectory; otherwise the backward and retraced traje
would diverge. The retraced forward trajectory gives the correct quantum amplitudes
hopping probabilities at the barrier, which are then used to further integrate the trajec
forward in time (using the correct probabilitigg) until a specified product state is reachec

The correct switching probabilities are determimagabsteriorifor a backward trajectory
started at the dividing surface. The starting conditions of the backward trajectories
artificial, however, and the dynamics of the backward trajectories is based on the inco
switching probabilities so it may or may not represent the true dynamics well. In orde
recover the correct dynamics each trajectory is given a statistical weight to indicate
well the trajectory represents the true dynamics. Thus, instead of a single straightfon
trajectory a swarm of trajectories starting at the dividing surface is integrated. Each trajec
is weighted to ensure that one obtains the same quantum probabilities at all times
trajectories based on the approximate probabilifigsas from trajectories integrated with
the correct switching probabilitieg. In order to achieve this the independent trajectorie
are weighted afterward with a weighting functighthat is a product of weighting factors
w(t)) that are calculated on the fly at each time gtep

W:Hw(h). (32)
|

The weighting functionsv are determined during the retraced trajectory by calculating

w(t) = gf’—“; when a hop was attempted to stite
J

1-2 49k

= when no hop was attempted (33)
1= fi
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at a given time; and for occupied statp Note that the weighting functions do depend on
the history of the trajectory. Also note that if a hop is attempted in the backward trajectc
at a given time step either there occurs a hop (the hop is successful) or a velocity reve
takes place (the hop is unsuccessful) when using MDQT as the hopping algorithm. T
has to be reproduced in the forward retraced trajectory. The choice for the local hopr
criterion fj is in principle arbitrary, but it is desirable to choose it in such a way that
behaves similarly to the original criteriagk. This minimizes the number of trajectories
necessary to obtain statistically significant results.

The explicit retracing of the steps of the backward trajectory can be eliminated in 1
determination of the weighting function. An alternative way to obtiris to consider
Net independent sets of backward trajectories simultaneously, whei® the number of
included states in the expansion (22). The initial amplitudes for the sets of backward tra
toriesC} are chosen as&function at the barriea?ij = §;; (the superscrigtdenotes a set of
amplitudes and the subscriptindicates the state as usual). Then the linear combination:
amplitudes from the backward trajectories that results in the “correct” amplitudes at the
actant region (8-function) can be determined from matrix inversion. Again the trajectorie
are assumed to hop at the same times as the backward ones. This method is computatic
more involved than the explicit retracing of the backward trajectory forward in time, whic
is conceptually more straightforward.

The heart of the MPES-MDIE method is the general strategy for obtaining the dynami
factor by weighing independent trajectories. Although MPES-MDIE has been formulat
based on MDQT, in principle other surface hopping methods with memory could be u:
such as the WRF method [78]. The equilibrium flux can be calculated in a variety of we
as well.

3.2. Example Application

So far the infrequent event method MPES-MDIE has been applied to the calculat
of the reaction probability and dynamical facterin a one-dimensional two-state model
[136]. This model could easily be solved without application of MPES-MDIE because
its simplicity but it nevertheless served as a useful test case. A wide range of temperat
was considered and the logarithm of the reaction probability was shown to be invers
proportional to the temperature. The dynamical fagtawas shown to decrease with tem-
perature, i.e., there are more recrossings at lower temperature, as expected. This m
promises to be very useful for simulation of proton and electron transfer reactions, for
ample, for proton transfer in bulk water. Under equilibrium conditions this is a slow proce
and the excess proton relocates slowly through the solvent. (Note that this is a comple
different problem from the one we will consider in the next section, where we deal wi
non-equilibrium situations.)

4. SURFACE HOPPING FOR MULTIPLE QUANTUM DEGREES OF FREEDOM

The previous sections dealt with surface hopping methods that can be equally well
plied to multiple quantum degrees of freedom as to a single quantum degree of free(
provided that the adiabatic eigenstates of the system can be calculated accurately. The
is not trivial. The extension to multiple coupled quantum degrees of freedom is challeng
because the correlation among the quantum particles must be included in a computatio
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tractable way. Methods based on the Feynman path-integral formalism [138—146] have
utilized to treat multiple hydrogen atoms quantum mechanically, but typically these m
ods employ a transition state theory approximation rather than directly predict real-t
dynamical properties (except Ref. [138]).

One method that has been applied to the quantum dynamical simulation of mult
nuclei or vibrational modes is the TDSCF method [73, 147-151]. In TDSOR-garticle
wavefunction is approximated as a single produd @ine-particle wavefunctions (compare
to Section 2.1). In this way thd-particle time-dependent Sadinger equation is separated
into N coupled single-particle equations of motion, which leads to substantial computati
savings. Each quantum particle moves in a time-dependent mean potential that is obt
by averaging over the motion of all of the other quantum particles in the system. The sin
particle equations of motion and the mean potentials in which the quantum particles n
must be solved self-consistently. In the application of TDSCF to mixed quantum/class
systems (often called the Q-C TDSCF method [149-152]) the classical particles move
time-dependent mean potential obtained by averaging over the motion of all of the quat
particles in the system. TDSCF has been extended to incorporate correlation amon
quantum particles [153-168] using, for example, multi-configurational TDSCF meth
[155-164], but not in the context of mixed quantum/classical simulations. One limitat
of TDSCF is that it cannot properly describe branching processes, i.e., processes invo
multiple pathways going from an initial state to a final one [153, 154] (see Section 2
The accurate description of branching processes is critical in proton transfer reac
because typically there are two distinct states of very different character involved (one i
and one covalent), and the system must accordingly experience different forces from
of these states.

Recently a method for dealing with more than a single quantum degree of freedol
mixed quantum/classical surface hopping simulations was developed [81]. This me
was developed for quantum protons or vibrational modes but adaptation for, e.g., qua
electrons is in principle straightforward. The drawbacks of this method are that it is
variational and that it cannot be proven that the Hellmann—Feynman forces are rigorc
correct. More recently a variational method was developed based on this method [82].
methods are called multi-configurational molecular dynamics with quantum transiti
(MC-MDQT). (The older method will be denoted MC-MD®.) These methods are basec
on a self-consistent field calculation of the quantum adiabatic eigenstates. Note that thi
differentapproach from thatused in TDSCF methods discussed previously. The MC-ML
methods describe branching processes well.

4.1. Wavefunctions for Multiple Quantum Degrees of Freedom

So far we have assumed that the adiabatic eigenspateen be calcuated. For a single
quantum degree of freedom the one-particle quantum adiabatic eigenstates are stan
expanded in a set of basis functigngnote that thesg's have nothing to do with those in
Section 2.1)

K
¢ R = Gu(R)xa(r; R), (34)

a=1

whereK is the number of basis functions for the quantum particle. The calculation of
adiabatic eigenstates of the Hamiltonidlp is equivalent to calculation of the expansior
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coefficientss,. The energy eigenvaluesand eigenfunctions (given by coefficiewt$ are
given by the general eigenvalue equation

Hin =€ G, (35)

whereH is theK x K Hamiltonian matrix with elementg, |H | xs) (where agairj ) stands
for integration over the quantum coordinates), and the overlap nfatras elements

S = (Xa | X8)- (36)

The eigenvalues and eigenfunctiong;, i =1, ..., K, are obtained by diagonalization of
the Hamiltonian matrix. Depending on the basis set size and the nature of the problem the
are many ways to calculate (some of) these solutions to the time-independerdiSgar”
equation [63, 65, 78, 169-175].

For N quantum particles, the total quantum wavefunctibns expanded in a basis
of instantaneous adiabatic eigenstates of the quantum Hamiltéhjawhich are now
multiparticle wavefunction®;,

YR =D G®dir; RY). (37)

The N-dimensional eigenvalue equation (time-independent@&lihger equation) that has
to be solved is

Ho(r, R)®i(r; R) = Ei(R)®i(r; R). (38)

(N-dimensional refers to the number of quantum degrees of freedom. Each quantum degr
of freedom may ben-dimensionalm=1, 2, 3, so technically the set il m-dimensional.)

In a straightforward\ -dimensional generalization of MDQT tiN-particle adiabatic states
are expanded ilN-dimensional basis functions analogous to the expansion in the one:
particle case. This approach is called a complete configuration interaction (Cl) treatmer
and here folN quantum degrees of freedom the basis set expansion is

K
®i(;R) =) Gy(RIET;R), (39)
J

whereK is the number oN-dimensional basis functior§s. TheN-particle basis functions
&5 are products of the one-particle basis functiqﬂ%,

N
£ R) =[x R). (40)
k=1

where the superscripk) labels the quantum degrees of freedom,.1, N. Note that
j=(1, ..., jn) is a set of indices wherg is one of theKy basis functions for quan-
tum particlek. For example, for two quantum degrees of freedom the intlex(1, 1)
denotes the basis functia 1, = x.” xi*, a product of the basis functiong® and x.?.
(A commonly used notation for such a producti®’ ® x:?.) In Eq. (39) the total num-

ber of N-dimensional basis functions equais= ]}, Kk, whereKy is the number of
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one-particle basis functions for quantum particl®ote that the formalism is presented in
terms of Hartree products because it is assumed that the quantum particles occupy et
different regions in space. This method can be generalized by using Slater determina

When one uses a complete Cl expansion of the total wavefunction (39), solving
time-independent Scbdinger equation quickly becomes computationally intractable wi
increasing number of quantum particlés and number ofN-particle basis functions.
This problem can be surmounted by using a self-consistent field (SCF) formulation
a self-consistent field approach, the tokldimensional eigenvalue equation for thie
dimensional adiabatic states is split into a set of one-dimensional coupled equation
one-particle adiabatic eigenstaifs The N-particle adiabatic state®; can be obtained
either in a single-configurational (SC-SCF) method or a multi-configurational (MC-SC
method. A configuration in this context denotes a product of single-particle adiabatic st
¢k. In a single configuration method each adiabatic state of the total system is approxin
by a single product of one-particle wavefunctions. The approximation of the adiabatic st
by single configurations is given by

N
@11 R) =& R) = [[¢l i R). (41)
k=1
Here, J is a set of indices defining the configuratiohs= (ji, j2, ..., jn) and jx is the

state of quantum particlle belonging to theN-particle configuratiort;. Here an index
J = (1, 1) denotes the configuratian; 1, = ¢"¢:®. A single configuration description
results in easy-to-solve equations, but fails to include important correlation between
quantum particles [153, 154] as expected (Sections 2.1 and 2.5).

In order to accurately incorporate quantum correlation, a multi-configurational met
is needed (compare to Section 2.6). A multi-configurational description leads to more ¢
plicated equations. The adiabatic eigenstates are expanded in a b@stopfigurations,
i.e., they are a mixture of configuratiogs,

Q
O = d,(RE;R) (42)
J
= ) iy RS R pN (R, (43)
=1 jn=1

Here thedy;'s are the so-called configuration interaction coefficiemtgjs the number of
one-particle states for a given partiddeand Q is the number of included configurations
Q= HkN=1 mg. If a complete basis were used, the expansion would approach the e
wavefunction. In practice, however, the summation is limited.

4.2. Multi-configurational Molecular Dynamics with Quantum Transitions

Self-consistent calculation of the adiabatic eigenst@ess described above is straight-
forwardly combined with MDQT for incorporation of nonadiabatic dynamics. In the origin
formulation of multi-configurational molecular dynamics with quantum transitions (M
MDQT*) [81] the multi-configurational approach to the total wavefunction is combined w
the use of effective Hamiltonians. Each quantum particle “feels” an effective Hamilton
het in which the interactions are averaged over the wavefunctions of all other quan
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particles. Then the set of equations
hd (r R)p ™ (1 R) = 6 R)p ' (i R) (44)

has to be solved self-consistently, where each equation is solved in the same manner :
a single quantum degree of freedom. The effective Hamiltonian for paktintel occupied
stated; is given by

Q N N
het =t+ > d? <H¢}§>(rko>|wr, R, t)|H¢}5)<rk/>)>, (45)
J k'K k' #£k

wherety is the kinetic energy operator for this parti&leand the second part of the equation
is the effective potential energy surface for this particle when stateccupied. An example

of effective potential energy surfaces for two one-dimensional quantum protons is gi
in Fig. 7, where in addition to the effective potential energy curves also the lowest t
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FIG. 7. (a)Chain of three water molecules in which hydrogens that form hydrogen bonds within the chain
described quantum mechanically (and labelgedit H) while all other degrees of freedom are treated classically.
H,; and H; are restricted to one-dimensional motion on the donor—acceptor axes in this example. For illustra
purposes the quantum protons are placed at the expectation values of their coordinates in this kind of fi
(b) One-dimensional effective potential for each quantum proton with two eigenstates lowest in energy :
function of quantum coordinateg along the oxygen—oxygen axes.
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one-particle adiabatic eigenstates are depicted for each particle. The use of this effe
Hamiltonian provides a clear physical picture of the proton transfer mechanisms. The sy
is in a single configuration far from regions of strong coupling, while only in regions
strong coupling the are wavefunctions multiconfigurational.

MC-MDQT* describes branching processes well and it was applied to a simple c
dimensional model systems of proton transfer reactions with up to three quantum pro
It was shown that this method is accurate and fast for these systems. The occupation
abilities of the eigenstates and the fraction of trajectories in each state at a given
were compared to results from a complete CI calculation for two quantum protons
were in excellent agreement. MC-MD®Ts not a variational method, however, and on
cannot rigorously prove that the Hellmann—Feynman forces equal the exact forces
though the Hellmann—Feynman force is identical to the exact force for the exact wavef
tion (see Eq. (12)—(14)), it has been shown to differ from the exact force for some ty
of approximate wavefunctions [176, 177]. As a result, Pulay derived corrections to
Hellmann—Feynman force for electronic wavefunctions [176, 177]. The analogous cor
tion terms for proton (or vibrational) wavefunctions are numerically difficult to calcula
with the MC-MDQT* method. In general calculation of these Pulay corrections may 1
be easy or may even be computationally prohibitive if an analytical expression cannc
derived.

In the newer MC-MDQT method both of the above problems are addressed. It
variational method and it was proven that the Hellmann—Feynman forces are exact L
certain conditions. For details see Ref. [82]. The adiabatic eigenstates are again exp:
according to Eq. (42). In order to determine the tddaparticle wavefunction and the one-

particle adiabatic eigenstates, or in other words to calculate the coeffidigramdc™, the

la 7

variational principle is applied to the total energy ofreéldiabatic state§, = (®n|Hq|Pn).
This is done subject to the orthonormality conditions for the one-particle states

(6 |9]7) =8 =0 (46)
or
Kk
> el sl — 6 =0, (47)
af

WhereSS;) is the overlap matrix of the basis functiopsand that for the configurations

Q
> dd;—-1=0 (48)
J=1

for all n eigenstates. From now on we will drop the subscript denoting the adiabatio stz
since all the sub- and superscripts in the following tend to be confusing as itis. The equa
below are for a given adiabatic state, and for each adiabatic state analogous equations
Equations (47) and (48) lead to the sets of equations

aE Qo|21 =0 49
o —nZJjJ— = (49)
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and

(k) [E Ze(k) (Z .(f,) ?f@)szi )_5”)] =0, (50)
ij

af

whenn and thee(k)’s are Lagrange multipliers. The first set of equations reduces to tt

standard elgenvalue equation
Hd = nd, (51)

where the matrid has matrix elements; ; = (& |Hql£,). As in standard electronic struc-
ture theory, the coefficient can be calculated by diagonalizing tHematrix. The second
set of equations can be written as a matrix equation from whickx%eoeﬁicients, ie.,
the one-particle adiabatic eigenstates, can be calculated [178].

The MC-MDQT method as implemented is a multi-grid method. The wavefunctions
each quantum degree of freedom are represented on a grid that is defined by the pos
of two classical particles (donor and acceptor). The quantum Hamiltonian depends on |
guantum and classical degrees of freedom (Hg(r, R, t)), and the coefficients depend on
the classical degrees of freedom (igy(R) andc(k)(R)). In addition, each basis function

x ¥ depends on a set of parametgf§ (including, for example, the center and the width),
which may depend explicitly on the classical degrees of freedom. The expression for
force is then for each componeR,, wherey indicates both a classical particle and a
component (i.ex, y, orz):

£, - _JE®
" IR,
= aR (@(dy, ¢, pl)IHq(r: R)I®(dy, ¢, p)). (52)
L

Itwas shown that with an appropriate choice of basis functions the Hellmann—Feynman fc
(12) is rigorously identical to the exact force in MC-MDQT [82]. There are two condition
that the basis functiong® need to satisfy in order to achieve this. (Note that these a
sufficient but not necessary conditions.) The first condition is that the origin for the ba
functionsx % for quantum particlé exactly follows the motion of the classical particles
associated with this quantum particle. The second condition is that the basis functions de
only on the distance to the origin of the basis function and other constant parameters, -
as the width, that do not depend on the classical coordinates. In this manner the expel
calculation of Pulay corrections is avoided.

In practice a way to initialize the MC-MDQT method at every time step is require
In principle one could use the values from a previous time step as a starting point for
self-consistent calculations, but this requires quite a large number of configurations in ol
to obtain sufficient flexibility in the wavefunctions. Alternatively the MC-MDQmethod
can be used as a startup. For the systems we studied the initial wavefunctions calculate
MC-MDQT* needed only little refinement. Apart from the multi-configurational mixing tha
occurs during branching processes, in most instances the wavefunctions could be accul
described by a single configuration. Although more complicated to program, converge
with the MC-MDQT method is slightly faster than with the MC-MD@mmethod.
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4.3. Application: Proton Transport along Water Chains

Reactions in which multiple protons are transfered play a critical role in many import
chemical and biological processes, for example, a wide range of enzyme reactions (see
[179-182]. Moreover, in transmembrane proteins such as bacteriorhodopsin [183, 184
photosynthetic reaction centers [185, 186], protons are transported across a mem
through a series of proton transfer steps involving water molecules and the side chai
amino acid residues in the protein. In this section we focus on proton transport along ct
of hydrogen-bonded water molecules, which is thought to play an important role in the
translocation of protons over large distances in these proton pumps [187].

A number of simulations of proton transfer reactions in solution have been done; see
[139-146, 152, 188-202]. Most of the studied proton transfer reactions are single-pr
transfer reactions, where only one hydrogen atom is treated quantum mechanically
are not easily extendable to processes involving coupled multiple proton transfer s
where many hydrogen atoms must be treated quantum mechanically. Recently num
simulations of proton transfer in water have been performed [138, 145, 146, 203-2
In particular, Poras and Roux used Feynman path-integral methods to study the e
librium properties of protonated chains of water molecules [145, 146], and Lobaugh
Voth used the centroid molecular dynamics method to study the dynamics of a sin
proton transfer reaction in water [138]. The work summarized here differs from previt
work in that quantum dynamical non-equilibrium simulations of multiple proton trar
fer reactions in chains of water molecules were performed using the MC-MDQT metl
[207-209]. Proton transfer along protonated chains in an external electrical field of tl
and four water molecules was investigated. A protonated chain of four water molec
is thought to be responsible for the proton shuttle mechanism in the bacteriorhodc
proton channel. In order to drive the proton transfer process the effects of the protei
the chain of water molecules were mimicked. A linearly increasing external electric fi
was applied to the water chain to model the field exerted by a protein, and harmoni
straints were applied to the oxygen atoms to model the structural constraints of the prc
Only the transferring hydrogen atoms (two or three in this case) were treated quar
mechanically due to computational limitations arising from the need to calculate mult
mensional integrals for the many-body polarization terms in the employed water pote!
model [210-212]. For further details see Ref. [207]. Note that in these simulations
system was in its electronic ground state, while the protons were doing the nonadial
dynamics.

The MC-MDQT method was tested on a protonated chain of three water molecules w
two protons were treated as one-dimensional quantum particles [82]. The simulations'
initiated in configurations where the excess proton had been stabilized on one end c
chain by an external electric field. In these initial simulations themselves, however,
external field was turned off at tinte= 0. The agreement between the energy eigenvalu
obtained by a full ClI calculation and MC-MDQT (which is an order of magnitude faste
was excellent for the four adiabatic states lowest in energy when only nine configurat
were used in MC-MDQT. The forces were also in excellent agreement.

In subsequent simulations, the external field was ramped in order to drive the pr
transfer process. The effect of the ramping rate and the strength of the harmonic rest
on the oxygen atoms, i.e., the stiffness of the chain due to structural constraints of
protein, on the transfer rates and the importance of excited states in the dynamics
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FIG. 8. Snapshots of configurations during a sample trajectory of the protonated trimer with harmonic
straints force constaft = 150 kcal mot? A-2 and ramping rate\ E = 10f V cm~2 At~ at times (a} = 0.000 fs,
(b)t =3.125fs, and (c} =9.375 fs. (At =0.0625 fs.) Note that for the initial non-equilibrium configuration the

applied electric fieldE| =5 x 10’ V/cm points toward the left end of the chain in order to keep the quantun
protons, H and H, in place. The applied field is then increased linearly in time during the trajectory.

a

Cc

investigated. In Fig. 8 an example trajectory is shown for the protonated trimer. In all trirr
trajectories a sequential mechanism was observed at early times in the evolution.

In these simulations, the ramping rate of the external field directly controlled the trans
process. It was observed that the transfer process is direct and fast for rapid rampin
the external field, whereas the transfer process is more indirect and involves alternz
pathways for slow ramping rates. This affects the importance of nonadiabatic events.
the highest ramping rates the process was primarily adiabatic. Only for the slowest ramj
rate were nonadiabatic effects considerable. Nonadiabatic events were mainly obse
after the maximum value for the external field was reached and the second proton mc
back and forth around its midpoint before forming a new OH bond. Nonadiabatic dynam
did not become important until after the transfer process was completed, however.
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Another factor that influences the importance of nonadiabatic dynamics is the flexib
of the chain. Different stiffnesses were investigated ranging from an entirely flexible cf
to a very stiff chain. Increased flexibility of the chain increased nonadiabatic effects fi
given ramping rate of the external field. This phenomenon arises in part from the la
temperature increase for more flexible chains. For the protonated tetramer the same t
were observed.

These simulations indicate that the fluctuating electric fields and structural restre
of the protein environment strongly affect the dynamics of proton transport along wx
chains. In addition, these simulations illustrate that nonadiabatic effects play an impol
role in the proton transfer dynamics of water chains under certain non-equilibrium co
tions. Nonadiabatic effects may not be as important in proteins such as bacteriorhodc
however, because of thermal dissipation. Moreover, nonadiabatic effects may not pl
significant role in the protein environment because the proton is quickly transferred t
amino acid after moving down the water chain. The MC-MDQT method is currently use
study the dynamical effects of solvation by solvating various parts of the chain with expl
water molecules [213]. Moreover, MC-MDQT will be used to study proton transport alc
a water chain in bacteriorhodopsin to investigate the structural and dynamical effects
specific protein environment.

5. SUMMARY

In this paper mixed quantum/classical methods were discussed for computer simul;
of nonadiabatic dynamics, i.e., of processes in which excited states play a prominent
The methods summarized here all recognize the fact that a mixed-state description c
quantum subsystem is often correct only for very short time scales. The methods hen
use various surface hopping algorithms to overcome the problems associated with m
state propagation for longer time scales. At this point no conclusive evidence is know
to which method is the best.

The advantages of the MDQT method [1] are that the forces are easy to evaluate an
the correct occupation probabilities of the quantum states are obtained. A disadvantag
complicated systems is that an ensemble of trajectories has to be integrated in order to
the quantum coherence. A decoherence time or a coherence damping factor could be d
explicitly but clashes to some extent with the philosophy of this method. So far the cohere
is dropped only rarely in applications of this method. The advantage of most methods b
on the Pechukas force [78, 100] is that an explicit decoherence time is defined so tha
averaging over trajectories is needed. Also the quantum character of the classical par
can be patrtially included in this way. This can also be seen as a disadvantage, how
Defining a decoherence time is tricky. Not only does it vary during a trajectory, but it a
differs between different pairs of states. A definite disadvantage is that the Pechukas fo
not predictive and hence the force calculation is far from simple. Another method comb
surface hopping with a mean field force for short time scales [102]. Here an advanta
that the force calculation is simple while the combination with the fewest switches critet
from MDQT guarantees that the correct occupation probabilities of the states are obta
An advantage over MDQT is that this method appears to be more robust with respe
representation (adiabatic vs diabatic), but the latter method has not been extensively t
yet. Obviously all methods discussed do require averaging over initial conditions.
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In addition we summarized methods based on combination of MDQT with other tec
nigques. The first is a combination of MDQT with the ideas of transition-state theory a
is a method for simulation of infrequent events. The second is a combination with a mu
configurational self-consistent field calculation of the adiabatic eigenstates for the s
ulation of multiple quantum degrees of freedom. Several applications were given as
example.

The field of mixed quantum/classical simulation techniques is far from static. The syste
that can be investigated grow with the growing computer power. Mixed quantum/classi
treatment will remain the method of choice for many systems for which complete quant
mechanical dynamical treatment remains impossible in spite of increasing computatic
resources. Semiclassical methods are very promising as well, however.
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